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ABSTRACT

To better identify task-activated brain regions in task-based
functional magnetic resonance imaging (tb-fMRI), various
space-time models have been used to reconstruct image se-
quences from k-space data. These models decompose a
fMRI timecourse into a static background and a dynamic
foreground, aiming to separate task-correlated components
from non-task signals. This paper proposes a model based on
assumptions of the activation waveform shape and smooth-
ness of the timecourse, and compare it to two contemporary
tb-fMRI decomposition models. We experiment in the image
domain using a simulated task with known region of interest,
and a real visual task. The proposed model yields fewer false
activations in task activation maps.

1. INTRODUCTION

Improving spatial and temporal resolution in fMRI will likely
require better dynamic image reconstruction from undersam-
pled k-space data. In particular, acceleration of fMRI data
acquisition achieved by parallel imaging has led to recon-
struction models based on sparsity and low-rank assumptions
[1]-[4]. In addition to confounding factors such as physio-
logical noise, scanner drift, and motion effects, challenges in
fMRI reconstruction also arise in the choice of model assump-
tions and cost function formulation. With different aims in the
timecourse analysis of task-based and resting state fMRI, it is
desirable to develop models that address specific needs.

This paper considers task-based fMRI (tb-fMRI), with
the goal to detect task-activated regions of the brain. Tra-
ditional image analysis involves preprocessing the recon-
structed images to correct for noise and artifacts, then com-
parison with a predefined hemodynamic response function
(HRF)-convolved activation waveform using general linear
modeling (GLM) [5]. To obtain a model appropriate for tb-
fMRI, we consider different cost functions in the image space,
taking into account a priori knowledge of the task and blood
oxygenation level dependent (BOLD) signal behaviors. We
then propose a model based on temporal smoothness assump-
tion, and show that it better recovers the image sequence and
timecourse on fMRI datasets with simulated and real tasks
than several other temporal models.
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2. FMRI MODELS

Our long-term goal is to develop spatio-temporal models for
whole-brain fMRI signals that are suitable for image recon-
struction from undersampled k-space data. To investigate var-
ious models, we start with “fully sampled” fMRI data over a
small brain slab that has been reconstructed frame by frame
to yield an image series. We then retrospectively undersam-
ple those dynamic images, and investigate how well various
space-time models can perform the matrix completion prob-
lem of recovering the original series of images from the un-
dersampled image data:

argmin
X

1

2
‖ΩX − d‖22 + λR(X), (1)

where X ∈ CNxNy×Nt is the desired image sequence, Ω :
CNxNy×Nt → CNs is a spatial and temporal random under-
sampling operator, d ∈ CNs is the undersampled image, and
R(·) is a regularizer with parameter λ that depends on the
space-time model assumptions.

The motivation for (1) is to investigate models that can
recover the image even in the presence of spatial and tempo-
ral undersampling, while relieving the computational burden
and algorithm complexity of solving a reconstruction prob-
lem from k-space. Here we obtain d by reconstructing images
from fully sampled k-space data and then retrospectively un-
dersample with Ω. We then compare (1) with different under-
lying assumptions, and present their corresponding cost func-
tions, optimization schemes, and fMRI task performance.

2.1. Existing Models

This section reviews two existing reconstruction models for
tb-fMRI in the framework of (1), with underlying assump-
tions leading to the proposed model in the next section.

2.1.1. Low-Rank Plus Sparse (L+S) Decomposition

The low-rank plus sparse (L+S) approach [2],[3] models
fMRI image as X = L + S, where the low-rank component
L models the non-task temporally correlated background,
and the sparse component S models the pseudo-periodic
BOLD activity. With these assumptions in the image domain,

2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
April 3-7, 2020, Iowa City, Iowa, USA

978-1-5386-9330-8/20/$31.00 ©2020 IEEE 1035



problem (1) becomes

argmin
L,S

1

2
‖Ω(L+ S)− d‖22 + λL‖L‖∗ + λS‖TS‖1, (2)

where T : CNxNy×Nt → CNxNyNt is the (unitary) temporal
Fourier transform operator. The nuclear norm encourages L
to be low-rank, and the l1 norm encourages S to be periodic.
We solve (2) by alternating between two proximal gradient
updates, with singular value thresholding (SVT) for L and
soft thresholding for S.

2.1.2. Low-Rank Plus Task-Based Decomposition (L+UV)

Instead of using temporal-Fourier-transformed sparsity as a
regularizer, [4] considers a spatial-temporal decomposition
UV , where U ∈ CNxNy×Nr is an estimated spatial map
corresponding to a predefined temporal basis V ∈ CNr×Nt ,
whereNr is the number of task-associated basis vectors. Here
V can be a HRF-convolved waveform, or more generally a
sinusoidal or block-like function, along with its temporal
derivative. Compared with the L+S model, the temporal basis
V further constrains the shape of activation signal. In the
image space the minimization problem (1) now becomes

argmin
L,U

1

2
‖Ω(L+ UV )− d‖22 + λL‖L‖∗, (3)

which has one fewer regularization parameter to tune than (2).
We again solve (3) by alternating minimization, updating L
by SVT and U by closed-form linear least squares update.

2.2. Proposed Model: Smooth Background Plus Spatial-
Temporal Decomposition (B+UV)

Both (2) and (3) assume that a timecourse can be decom-
posed into a temporally static background and a dynamic
foreground, with incoherence between the two. However,
incoherence of L and S in (2) might not apply to tb-fMRI,
where the block-like task activation has low rank. The tem-
poral basis in (3), on the other hand, aims to separate the
two components with a priori information of the activation
waveform, to specify an expected shape of the activation.

Building on the idea of decomposition with a predefined
temporal basis, we propose to model the image as X = B +
UV , with B smoothly varying across time, and UV captur-
ing activation and general trend of the timecourse. In addi-
tion to the activation waveform in V , we consider a column
of all ones to account for the mean, and a linearly spaced vec-
tor for scanner drift, a typical artifact in MRI scans.What we
expect to be left in B is then the background BOLD sig-
nal, likely confounded by physiological and motion noise.
For the tb-fMRI goal of identifying task-activated brain re-
gions, we consider a smoothness assumption on the back-
ground signal B by applying a regularizer ‖DB‖22, where

D : CNxNy×Nt → CNxNyNt is a temporal finite difference
operator. Our new cost function is then

argmin
B,U

1

2
‖Ω(B + UV )− d‖22 + λB‖DB‖22. (4)

Since different voxels can have different slopes in the linear
drift component, including it in UV is advantageous over in
B, where the difference between timepoints is regularized by
the same parameter λB for all voxels.

We solve (4) by alternating update of B and U , with con-
jugate gradient or gradient descent for B, and closed-form
least squares update for U .

3. RESULTS

To compare the models on tb-fMRI images, we use two fMRI
datasets of healthy volunteers, collected on a GE 3T MRI
scanner with a 32-channel receiver. All human subject exper-
iments were conducted with IRB approval and with informed
consent. Our first experiment uses a non-task fMRI dataset,
with a simulated activation waveform imposed on a specified
region of interest (ROI). The second experiment is real tb-
fMRI with a visual checkerboard task. For each dataset, we
apply inverse Fourier transform to fully sampled k-space data,
and perform complex coil combinations using coil sensitivity
maps computed with ESPIRiT [6] to obtain image sequence
D ∈ CNxNy×Nt . We then randomly undersample D in space
and time to get d = ΩD.

We solve for image X with models (2), (3), and (4) by
sweeping across and selecting regularization parameters that
give the lowest total false positive plus false negative thresh-
olded activation. We then sweep across a range of thresholds
and compute the true positive ratio among activated voxels
and false positive ratio among non-activated voxels. We show
the timecourse results of a task-related and a non-task voxel.
We then use linearly detrended D and L+ S and u1, the first
column of U in the UV factorization by the L+UV and B+UV
models, to compute ROC (receiver operating characteristic)
curves of true positive vs. false positive ratios. Finally, we
pick a false positive ratio and plot the corresponding maps.

3.1. Simulated Task

For this non-task dataset we use a spiral trajectory with TR
= 720 ms, and obtain an image sequence D ∈ C100·100×300

with practical noise such as scanner drift and physiological
motion. We then add a scaled activation waveform shown in
Fig. 1 to a center ROI as a ground truth activated region, and
randomly undersample 30% of D to get d.

Fig. 2 shows timecourses of two voxels after parameter
sweeping and applying the three models in Section 2. The
L+S model has two regularization parameters to tune, and is
very sensitive to their values. In addition, S might not capture
the activation with the temporal Fourier sparsity assumption,

1036



especially when the activation is weak compared to back-
ground BOLD signal and noise, as shown in this case. Com-
pared with L+S, here the L+UV model better separates back-
ground and activation, with L capturing non-task-correlated
signals. For the proposed B+UV model, UV contains linear
and task components, and the timecourse |B+UV | resembles
|D| with temporal smoothing, due to our model assumptions.

Fig. 3 shows the ROC curves and activation maps thresh-
olded at 10−3 false positive ratio. Both the L+UV and B+UV
models give ROC curves and u1 maps similar to the corre-
lation map of D, while the L+S model produces many more
false negative activations. This aligns with observations from
timecourses, where Fourier sparsity assumption on S in L+S
causes non-task periodic behaviors. The B+UV model, on
the other hand, controls the activation shape by the task basis,
while avoiding overfitting by smoothness assumption on B.

3.2. Visual Task

We acquire a tb-fMRI dataset using a spiral-in trajectory with
TR = 50 ms. The task is an interleave of 20 seconds of left
and 20 seconds of right visual checkerboards task, repeated
five times. The waveform in Fig. 4 convolves the HRF with a
rectangular function that has value -1 for the left visual task,
and 1 for the right. After getting an image sequence using
sensitivity map, we undersample D ∈ C64·64×4000 by 50% to
evaluate the models.

Fig. 5 shows timecourses of an activated and a non-
activated voxel. The activated voxel corresponds to a right
visual task, with anti-correlation to our left visual activation
waveform. The L+S model captures some task-activated sig-
nal in the S component, although without predefined task
information, the periodic behavior looks less similar to the
activation waveform. Here the L+UV model does not sepa-
rate the task-related signal from background signal; because
of low-rankness of both components, L and UV can become
anti-correlated. Result from the B+UV model agrees with its
assumption, with linear trend and activation in UV , which
slightly exhibits a quadratic shape here due to the magnitude
operation. After adding the B component, the overall time-
course has a temporally smooth behavior. In this case with
the large number of timepoints Nt = 4000, the B+UV model
is also more computationally efficient, as it does not involve
an expensive singular value decomposition (SVD) for the
low-rank component in the other two models.

To define “ground truth” in this case, we use linearly de-
trended D as a reference to compute ROC curves and activa-
tion maps (thresholded at 10−3 false positive ratio) in Fig. 6
for the visual tasks. The L+S assumption results in some false
negatives, as in the simulated task case. Similarly, more false
positive activations occur with L+UV due to its temporal ba-
sis assumption. Among the three, B+UV most resembles a
temporally smoothed, but not oversmoothed, version of D.

Fig. 1. Simulated activation waveform across 300 timepoints.

Fig. 2. Timecourses of a task-imposed voxel (left column)
and a random voxel (right column) of image sequence D and
selected image components using three models, with their
correlations to the simulated activation waveform.

Fig. 3. Top: ROC curves with Area Under Curve (AUC) val-
ues for simulated task; Bottom: correlation maps of detrended
D and L+ S, and u1 maps of L+UV and B+UV models.

1037



Fig. 4. Visual activation waveform across 4000 timepoints.

Fig. 5. Timecourses of a right-visual-activated voxel (left col-
umn) and a non-task voxel (right column) of image sequence
D and selected image components using three models, with
their correlations to the visual activation waveform.

Fig. 6. Top: ROC curves with AUC values for visual task;
Bottom: correlation maps of detrended D and L+ S, and u1
maps of L+UV and B+UV models.

4. DISCUSSION AND FUTURE WORK

This paper presents a model for tb-fMRI, with an aim to de-
tect task-activated brain regions. Our proposed B+UV model
considers temporal linear trend and a predefined activation
waveform shape, with temporal smoothness assumption on
the background BOLD signal. This model can be extended to
more complicated tasks, for example, by including multiple
waveforms in the temporal basis matrix V .

Compared with existing tb-fMRI models, the proposed
method gives more accurate activation detection with fewer
false positives and false negatives. From the minimization
problem’s standpoint, it is less sensitive to regularization pa-
rameter choice than the L+S model. The L+UV model, as
implemented in [4], requires specifying a rank for L, and
the threshold varies across iterations, resulting in a “moving
target” cost function with different λL values. Our B+UV
model, on the other hand, has a cost function with one regu-
larization parameter, and can be alternatingly minimized with
closed form updates.

Future work will extend this model to reconstruction from
k-space, with validation using more practical undersampling
patterns. With a more complicated system operator that con-
siders coil sensitivity and sampling trajectory, we will also
develop fast algorithms for the optimization problem.
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