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Abstract

We present novel numerical methods for polyline-to-point-cloud registration
and their application to patient-specific modeling of deployed coronary artery
stents from image data. Patient-specific coronary stent reconstruction is an
important challenge in computational hemodynamics and relevant to the design
and improvement of the prostheses. It is an invaluable tool in large-scale clini-
cal trials that computationally investigate the effect of new generations of stents
on hemodynamics and eventually tissue remodeling. Given a point cloud of
strut positions, which can be extracted from images, our stent reconstruction
method aims at finding a geometrical transformation that aligns a model of
the undeployed stent to the point cloud. Mathematically, we describe the unde-
ployed stent as a polyline, which is a piecewise linear object defined by its
vertices and edges. We formulate the nonlinear registration as an optimization
problem whose objective function consists of a similarity measure, quantify-
ing the distance between the polyline and the point cloud, and a regularization
functional, penalizing undesired transformations. Using projections of points
onto the polyline structure, we derive novel distance measures. Our formulation
supports most commonly used transformation models including very flexible
nonlinear deformations. We also propose 2 regularization approaches ensuring
the smoothness of the estimated nonlinear transformation. We demonstrate the
potential of our methods using an academic 2D example and a real-life 3D bioab-
sorbable stent reconstruction problem. Our results show that the registration
problem can be solved to sufficient accuracy within seconds using only a few
number of Gauss-Newton iterations.
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1 INTRODUCTION

In this paper, we present novel numerical methods for the registration of polylines and point clouds algorithms and their
use to generate patient-specific models of coronary artery stents. To this end, we design novel distance and regularization
functions to be used in the flexible registration framework FAIR.1 Our method computes a geometrical transformation
that aligns a polyline, ie, a piecewise linear object, to a point cloud.
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One of the driving motivations of this work is to improve patient-specific computational modeling of stented coronary
arteries. Despite an active debate about the choice of the most appropriate therapy, percutaneous coronary interventions
have become increasingly popular due to limited invasiveness. Percutaneous coronary intervention implies the deploy-
ment of a prosthesis (called stent),2 generally made of biocompatible materials with a metallic core, to open a coronary
artery with severe occlusions. Next generation stents feature new bioabsorbable materials (generally absorbed within
3 years) and are targeted for acute pathologies in young patients.3 The different mechanical properties of those mate-
rials require thicker struts to handle the pressure during and after the deployment. Thicker struts may interfere with
the blood flow and eventually trigger biological processes and tissue remodeling with negative outcomes for the patient
(reocclusion).4-7 This is why an accurate assessment of the effect of the struts on the hemodynamics in patient-specific
scenarios is of utmost importance. To this end, the reconstruction of geometries for extensive fluid dynamics simulations
based on clinical data and images is needed.8-15 An excellent overview of computational modeling of stented arteries, and
comparison of imaging modalities used in this application is given in Morlacchi and Migliavacca.16

Computational fluid dynamics (CFD) is the tool of choice for this kind of investigations,17-22 as it allows personal-
ized quantitative analysis with a modest invasiveness for the patient. In particular, we target a fine analysis of the wall
shear stress (ie, the tangential component of the normal stress) induced by the blood flow on the struts and the tissue.14

The reliability of the results strongly depends on a precise patient-specific reconstruction of the stent and the lumen
after deployment. Developing efficient (ie, automatic or semiautomatic) methods for stent reconstruction is critical, for
example, when processing a statistically significant number of patient datasets in large-scale clinical studies aiming at
quantifying the effectiveness of the therapy.14,23 The accuracy and the efficiency of the reconstruction are challenged by
the complexity of the sequence of steps and the large variability of cases in diverse patient-specific settings. We give a
short description of the procedure currently developed in the Emory University Hospital in section 6.1.

To properly reduce patient variability and to improve the automation procedure, it is critical to guide the recon-
struction with prior information available from the design of the stent. In fact, there are some practical limitations on
patient-specific data. For instance, optical coherence tomography (OCT) images cannot resolve the entire vascular section
(see Figure 6) due to the shadow of the catheter. Therefore, a circular (section-dependent) sector is missing in each image.
To compensate the missing data, the information provided by the design of the stent provides a ground truth to guide
the patient-specific reconstruction in an accurate and highly automated way. This requires to identify a map between the
undeployed and the deployed geometries so that the missing information in the latter can be recovered by the mapping
of the former one. This map can be calculated by a “virtual deployment,” ie, a simulated operation mimicking the act of
deployment. This can be done by a series of Boolean operations24 or by mechanical simulation of the expansion.25-27 While
these approaches have great potential, the lack of knowledge of the mechanical properties of the wall to be used in the
virtual deployment may be critical.

In this work, we privilege a more data-driven approach, related to “registration procedures.” According to a similar
guideline, in O'Brien et al,28 the OCT-based stent reconstruction is guided by an educated combination of a priori infor-
mation on the stent design. In fact, the undeployed stent is registered to the point cloud of strut locations using a nonrigid
point-to-point registration procedure.29 The procedure is tested on one case of a metallic stent in a porcine artery.

The key contributions of the present paper are to represent the stent efficiently as a polyline (defined in Besl and McKay30

as piecewise linear objects consisting of vertices and edges) and develop new numerical methods for registering polylines
to point clouds. In the context of stent reconstruction, we assume that the elements of the point cloud (eg, strut positions
detected in OCT images) represent postdeployment points of the polyline (eg, model of the undeployed stent), but the
correspondence is unknown. Our goal is to establish the map by geometrically deforming the polyline object such that
its distance to the point cloud is minimized. We exploit the polyline structure to compute the correspondence between
the polyline and a given point, by projection onto the edges of the polyline. This assignment is (almost everywhere)
differentiable with respect to the deformation, and derivatives are easy to compute, thus, enabling fast optimization.
Registration is known to be a challenging and ill-posed inverse problem and tailored approaches have been developed for
registering images,1,31-34 curves,35,36 surfaces,37-39 point sets,40,41 or polyline objects.30

We present 2 novel regularization approaches tailored to the nonlinear polyline-to-point-cloud registration problem.
As in most applications of registration, regularization is of paramount importance to address the ill-posedness and
under-determinedness of the problem; see also Fischer and Modersitzki42 for a discussion on ill-posedness of the related
image registration problem. Our first approach discretizes the transformation directly on the vertices of the polyline
object. In this way, very complex deformations can be achieved, but tailored regularization is required. We propose 2
regularizers that enforce smoothness and favor length-preserving transformations to improve robustness against noise
and enforce plausible solutions. This formulation often leads to fewer degrees of freedom that need to be optimized. We
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demonstrate that combining these 2 ideas allows highly accurate nonlinear registration in the presence of noisy data.
Our second approach collocates the transformation on a regular grid and deform the stent indirectly by interpolation.
Regularity of the transformation can be enforced by choosing a relatively coarse grid. Additionally, we propose using
state-of-the-art regularization techniques, for example, based on nonlinear elasticity34,43 to guarantee invertibility of the
computed transformation.

The paper is organized as follows. In Section 2, we mathematically define the polyline object as an undirected graph,
introduce transformations, distance measures, and derive the optimization problem. Section 3 presents to novel regu-
larization techniques for nonlinear polyline registration. The potential of our method is demonstrated with numerical
examples in Section 5. A brief summary of our pipeline used to reconstruct 3D stents for CFD analysis and the contribu-
tion of the proposed method in this context are provided in Section 6. Finally, an extensive discussion of the main features
and limitations of our methodology with comparison with the existing literature is given in Section 7, together with some
conclusive statements.

2 MATHEMATICAL FORMULATION

In this section, we provide a general mathematical formulation of the polyline registration problem. We define poly-
lines, their transformations, the distance of a point to the polyline, the optimization problem, and its solution through
the Gauss-Newton method and compute the derivative of the distance with respect to the transformation applied to the
polyline object. We finally discuss heuristic methods for outlier rejection.

2.1 Polylines and point clouds
Following Besl and McKay,30 we define a polyline as an object that consists of a number line segments, described by
vertices and edges. Let d denote the spatial dimension (here d ∈ {2, 3}) and let nv be th number of vertices of the polyline
object. Then, we rearrange the vertices v1, v2, … , vnv ∈ Rd into a vector of length d · nv, by listing in order the elements
in each of the d components,

v = (v(1)1 , v(1)2 , … , v(1)nv
, … , v(d)1 , v(d)2 , … , v(d)nv

) ∈ R
d·nv ,

where v(i) denotes the ith component of a vector. Denoting the number of edges of the polyline by ne, the edge connectivity
can be represented by the matrix

E = (e1, e2, … , ene ) ∈ N
2×ne ,

where ei ∈ N2 contains the indices of the 2 vertices defining the ith line segment, for i = 1, … ,ne. Since all edges are
bidirectional, we represent a polyline object as an undirected graph G = (v,E).

Our goal is to geometrically transform the polyline G, to minimize its distance to the given point cloud

p =
(

p(1)
1 , p(1)

2 , … , p(1)
np
, … , p(d)

1 , p(d)
2 , … , p(d)

np

)
∈ R

d·np .

2.2 Transformed polylines
For a given transformation y ∶ Rd ×Rd, we define the deformed polyline object by

y(G) = G((y(v1), y(v2), … , y(vnv )),E). (1)

In other words, the polyline is transformed by shifting its vertices and keeping the edge connectivity fixed. Therefore,
we collocate y on the vertices and denote the discrete transformation by

y =
(

y(v1)(1), y(v2)(1), … , y(vnv )
(1), … , y(v1)(d), y(v2)(d), … , y(vnv)

(d)) ∈ R
d·nv .

In the notion of Modersitzki,1 this transformation model can be categorized as “nonparametric” in the sense that the
dimension of the discrete transformation depends on the number of vertices.
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On the other hand, “parametric” transformations are characterized by a parameter w whose size is independent of
the number of vertices. We denote this dependency by y(w). Classical examples for parametric transformations are rigid
transformations, which consists of rotation and translation, or affine transformations, which consists of shearing and
scaling; see Modersitzki.1, Chapter 4 Parametric transformations can also model nonlinear deformations, for example, using
thin-plate splines44 or a piecewise linear transformation model discretized on a regular grid surrounding the polyline. The
latter, rather novel, concept will be discussed in more detail in Section 3.2.

2.3 Distance measures
To measure the distance between the point cloud p and the transformed polyline y(G), we need to find the closest point
on y(G), denoted by p̂i, for each point pi, where i = 1, 2, … ,np. Note that the corresponding point does not necessarily
need to be a vertex but in general is located on an edge of G. The projection of the ith point, pi, onto the jth edge of the
transformed polyline is given by

qij(y) = yE1,j + tij(y)(yE2,j − yE1,j),

where the Barycentric coordinate of the ith point with respect to the jth edge, tij, is computed by

tij(y) = min(1,max(0, cij(y))) with cij(y) =
(yE2,j − yE1,j)

⊤(pi − yE1,j)
||yE2,j − yE1,j ||2 . (2)

For each pi, we denote the corresponding point by

qi(y) ∶= qik(y), where k ∈ argmin j∈{1,2,… ,ne}||pi − qij(y)||. (3)

Note that, depending on the topology of the polyline object, the optimization problem (3) does not necessarily have a
unique solution. In principle, finding the corresponding point to all np points in the point cloud requires performing np ·ne
projections and choosing one with minimal distance. In practice, significant computational savings can be realized, for
example, by first finding a small number of closest vertices to pi and then testing only edges starting or ending in these
vertices.

There are several options for measuring the distance between the point cloud and the polyline. As a simple but effective
option, we consider the sum-of-squared-difference (SSD) function

DSSD (y,p) = 1
2
||q(y) − p||2, (4)

where q(y) is a vector containing the projections of the points in p computed as in (3). To improve robustness against
outliers, we also consider the (smoothed) Euclidean distance

DEuclid (y,p) = e⊤

√√√√ d∑
k=1

(Qk(q(y) − p))2 + 𝛽. (5)

Here, Qk ∈ R
np×d·np extracts the entries associated with the kth coordinate, e ∈ R

np is a vector of all ones, squaring
and square root are applied component-wise, and 𝛽 > 0 is a conditioning parameter that controls the smoothness of
the distance function. Note that for 𝛽 = 0, the standard Euclidean distance, which is nondifferentiable at the origin, is
obtained.

Both distance measures are, in general, nonconvex with respect to the transformed polyline, and thus local minima
can be observed. For example, the distance measure may have several local minima when rotating the polyline around
its main axis; see Figure 7.

2.4 Numerical optimization
Given a polyline G and a point cloud p, we estimate a transformation y establishing correspondence by solving the
optimization problem

min
w

D(y(w),p) + 𝛼S(w), (6)
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where D is a distance measure (eg, DSSD or DEuclid), S is a regularizer (or smoother), and 𝛼 > 0 is a parameter balancing
between minimizing the distance and the smoothness of the transformation. Choosing the regularization parameter for
nonlinear inverse problem such as the one at hand is a challenging topic. In the absence of a ground truth solution, we
use the L-curve method described in Hansen45 as an appropriate heuristic. For generality, we describe the parametric
transformation model here. The nonparametric case can be obtained by setting y(w) = w.

We use the implementation of the Gauss-Newton method and the default parameters for stopping provided in FAIR;
see also Modersitzki.1 To this end, we compute the gradient and approximated Hessian of the objective function in (6).
Derivatives of the regularization will be discussed in section 3.1. For the distance measures introduced above, we apply
chain rule to obtain

dwD(y(w),p) = dqD(q,p) dyq(y(w)) dwy(w),

where the second term, ie, derivative of the corresponding point, is obtained in section 2.5 and the derivative of the
third term depends on the transformation model and is, for the most common choices, computed in Modersitzki.1 The
derivative of the first term for DSSD in (4) is

dqDSSD(q(y(w)),p) = q(y(w)) − p.

The Hessian of the objective function is computed only approximately to ensure positive semidefiniteness and for SSD
reads

dwwD(y(w),p) ≈ HSSD(y(w),p) = (dwy(w))⊤ (dyq(y(w)))⊤ dyq(y(w)) dwy(w).

Derivatives for DEuclid are slightly more complicated but can be computed similarly; see, for example, using Haber.46, p. 84f

In each iteration of Gauss-Newton, a linear system involving the gradient and the approximated Hessian needs to be
solved to find a search direction. The size of the system depends on the number of parameters, ie, number of transfor-
mation parameters or the number of vertices for the parametric or nonparametric transformation model, respectively.
In the experiments considered in this work, the size of the system is relatively small, and we use Cholesky factorization.
For large-scale problems, iterative methods such as preconditioned conjugate gradient (PCG) schemes can be used; see
Saad.47 Having obtained a search direction, a backtracked Armijo linesearch is performed.48

2.5 Derivatives of correspondence
An advantage of exploiting the polyline structure over common point-to-point distances is that the projection onto line
segments is differentiable unless tij ∈ {0, 1}. Thus, qi(y) can (almost everywhere) be differentiated with respect to the
transformed vertices. For ease of presentation, we consider the nonparametric transformation model in which each vertex
is transformed directly. Derivatives for the parametric case can be computed easily using the chain rule.

For ease of presentation, we introduce the matrices Pj,P1
j ,P

2
j ∈ Rd×d·nv that extract the jth edge and its associated

vertices

Pjy = (P2
j − P1

j )y, where Pk
j y = yEk,j , for k = 1, 2. (7)

Using the projection matrices, the projection of the ith point onto the jth edge can be written as

p̂j(y) = P1
j y + tij(v)Pjy.

The derivative of the projection with respect to the positions of the vertices can be computed by applying product rule

∇yp̂i(y) = P1
j + tij(y) Pj + Pjy dytij(y)⊤.

If tij(y) ∈ {0, 1}, the Barycentric coordinate is nondifferentiable due to the min and max operations in (2), and we set
dytij(y) = 0. Otherwise, we apply the quotient rule and obtain

dytij(y) =
||Pjy||2

(
P⊤

j pj − PjP1
j y − P1⊤

j Pjy
)
− 2y⊤P⊤

j

(
pi − P1

j y
)

P⊤
j Pjy

‖‖‖‖
(

P2
j − P1

j

)
y
‖‖‖‖

4 .
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2.6 Outlier rejection
The accuracy of the registration depends on correct identification of the “corresponding” point. In (3), the “closest” point
is determined. However, these 2 points might not correspond in the presence of severe nonlinear motion, measurement
noise, or outliers, and wrong assignments may globally reduce registration accuracy. Therefore, we classify a pair of points
as outlier if the distance between the points is significantly greater than the distance between the other pairs and exclude
this pair when computing the distance measure. We follow Masuda et al49 and eliminate the term associated with pi and
qi if

D(qi, pi) > c𝜎, (8)

where 𝜎 > 0 denotes the standard deviation of the residuals, and c > 0 a coefficient that is chosen empirically.

3 REGULARIZING NONLINEAR DEFORMATIONS

As noted earlier, minimizing the distance term in (6) alone generally is an underdetermined and, thus, ill-posed problem.
To illustrate this, assume the nonparametric transformation model and consider a vertex such that no point in the point
cloud is projected onto one of its adjacent edges. Then, a small displacement of this vertex into any direction would not
affect the value of the distance measure. Thus, there are infinitely many solutions. This problem is common in registra-
tion and typically addressed using regularization. In this section, we present 2 approaches to regularization of nonlinear
deformations of polylines. First, we propose a smoothness and length regularizer for nonparametric registration of poly-
lines. Second, we describe a piecewise linear transformation model that allows using established regularizers from image
registration,1 for example, recently proposed techniques based on nonlinear elasticity.43

3.1 Regularizing nonparametric transformations
Nonparametric transformations discretize the transformation y on the vertices of the polyline. Thus, the displacement
applied to 2 different vertices is independent of one another; see (1). This yields a nv ·d dimensional optimization problem
in (6). It is possible to construct a case in which the distance is invariant to the position of a certain vertex. To overcome
the resulting ill-posednesss, we introduce 2 different forms of regularization.

First, we define a finite difference matrix D ∈ Rd·ne×d·nv for vertex functions such that

Dy =
(

y(1)E1,1
− y(1)E2,1

, y(1)E1,2
− y(1)E2,2

, … , y(1)E1,ne
− y(1)E2,ne

, … ,

y(d)E1,1
− y(d)E2,1

, y(d)E1,2
− y(d)E2,2

, … , y(d)E1,ne
− y(d)E2,ne

)
.

To enforce smoothness, we consider “diffusion” regularizer

Sdiff(y) = 1
2
||D(y − v)||2.

The gradient and Hessian of the regularizer are

dySdiff(y) = D⊤D(y − v) and dyySdiff = D⊤D.

The name of the regularizer is also motivated by the interpretation of its Hessian as the (vector valued) graph Laplacian
of G.50

To allow for large nonlinear transformations, we consider the nonquadratic length regularizer

Slength(y) = 1
2
||rlength(y)||2, where rlength(y) = I

Dy2

Dv2 − 1.

Here, the square root and division are computed component-wise, and I ∈ Rne×d·ne extracts entries belonging to the
same point and sums them up, such that

IDy =
((

y(1)E1,1
− y(1)E2,1

)
+ · · · +

(
y(d)E1,1

− y(d)E2,1

)
, … , (y(1)E1,ne

− y(1)E2,ne
) + · · · +

(
y(d)E1,ne

− y(d)E2,ne

))
.
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For this regularizer, the gradient and approximated Hessian are

dySlength(y) = rlength(y)⊤dyrlength(y) and dyySlength ≈ dyrlength(y)⊤dyrlength(y),

where the gradient of the residual is given by

dyrlength(y) = 2 I
Dv2 diag(Dv)D,

where diag(Dv) is a diagonal matrix with entries in Dv on its main diagonal. This regularizer penalizes changes in
edge length due to the transformation and is, thus, invariant against rigid transformations. Thus, large translations and
rotations are attainable.

Combining both regularizers above, we obtain a regularizer for nonparametric deformations of the polyline object

Snp(y) = 𝛼(𝜆Sdiff(y) + 𝜇Slength(y)). (9)

The proposed regularizers both enforce smoothness of the transformation and are key to drive the registration in regions
with sparse or noisy data. However, it is important to note that they do not ensure invertibility of the transformation.

In practice, edges of the polyline might cross each other after applying the transformation and judicious choice of the
regularization parameter is required.

3.2 Hyperelastic polyline-to-point-cloud registration
We now describe our novel approach that allows large deformations with guaranteed invertibility. It uses a piecewise
linear transformation model and the numerical implementation of a hyperelastic regularization energy suggested in
Ruthotto and Modersitzki34 and Burger et al.43

The key idea is to surround the polyline object by a rectangular grid of the domain Ω ⊂ Rd on which the transformation
parameters, denoted by w, are collocated as described in Ruthotto and Modersitzki34 and Burger et al.43 In short, each
grid cell is divided into 4 triangles (for d = 2) or 24 tetrahedra (d = 3), and the transformation is discretized using
piecewise linear and globally continuous finite elements. On this class of functions, we can compute the exact value of
the hyperelastic regularizer

Shyper(y) = ∫Ω

𝛼1

2
||y(x) − x||2 + 𝜓(cof∇y) + 𝜙(det∇y)dx,

where the penalty functions 𝜓 and 𝜙 are convex and chosen as, for example, in Burger et al.43 The volume penalty, 𝜙,
ensures invertibility of the optimal transformation, as it satisfies 𝜙(1) = 0, 𝜙(z) = ∞ for z ⩽ 0, and 𝜙(z) → ∞ for z → 0+

FIGURE 1 Hyperelastic registration of a 2D polyline (red) to a point cloud (black squares). The polyline is surrounded by a regular mesh
(blue) that is subsequently deformed to minimize the distance between the polyline and the point cloud. The triangular finite element mesh
is not displayed for the sake of readiness of the picture
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and z → ∞. This choice ensures that the transformation keeps invertible and orientation preserving; see Ruthotto and
Modersitzki34 and Burger et al43 for details.

Transforming the polyline requires interpolation from the nodes of the finite element (triangular) mesh to the vertices
of the polyline, written compactly as

y(w) = A(v)w,

where A is an (vector field) interpolation matrix that depends only on the position of the vertices before transformation
and can be built once. Overall, the optimization problem becomes

min
w

D(G(A(v)w),p) + 𝛼Shyper(w). (10)

An example for hyperelastic polyline registration is given in Figure 1.

4 PROCESSING PIPELINE AND IMPLEMENTATION

In this section, we provide implementation details for the polyline-to-point-cloud registration and provide some details
about its implementation.

4.1 Registration pipeline
To register a polyline to a given point cloud, we follow a registration pipeline consisting of the following 4 steps.

1. Rigid registration: To account for translations and rotations between both data sets, we perform a registration using the
rigid transformation model described in Modersitzki.1 To reduce the risk of being trapped in a local minimum, after
an initial registration, we estimate the main axis of the polyline object and rotate it accordingly. From each starting
point constructed in this fashion, we perform up to 10 additional Gauss-Newton iterations. Finally, the solution with
the smallest distance is selected.

2. Affine registration: To account for scaling and shearing, additional degrees of freedom are added to the transformation
model by considering affine linear transformations. The optimization is initialized using the coefficients of the previous
step. Finally, the coordinates of the polyline object are updated by applying the affine transformation. In our experience,
performing a rigid registration before affinely registering the data is beneficial to obtain reliable correspondences.

3. Hyperelastic registration: The affinely registered polyline is surrounded by a regular rectangular grid on which a
hyperelastic transformation is discretized using piecewise linear, globally continuous finite elements. The polyline
is transformed by evaluating the transformation on its edges. We typically use a relative coarse mesh to add addi-
tional regularization. Based on our experience, this step can be skipped in the absence of large nonlinearities in the
transformation, eg, compression and expansion.

4. Nonparametric polyline registration: As a final step, a nonparametric model is imposed, to account for small–scale
local transformations that have not been addressed in the previous steps. The strength of deformation in this step is
controlled by the parameters in the regularizer, addressed in (9).

4.2 Implementation
We perform the experiments using MATLAB R2016a, with a 2.7-GHz dual-core Intel Core i5. Our framework is imple-
mented as an extension of the image registration framework FAIR.1 FAIR is primarily designed for registration of images;
however, it provides valuable tools that can be used for other types of data, eg, transformation models, optimization rou-
tines, and hyperelastic regularization. Our approach is implemented as an add-on to FAIR that uses these existing methods
where possible. Since FAIR has no built-in support for polylines and point clouds, we implement specifically the distance
functions described in section 2.3, regularization methods described in section 3.1, and their derivatives.
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5 NUMERICAL EXPERIMENTS

We outline the potential of our method in several numerical experiments. In section 5.1, we provide an illustrative example
to show the difference of polyline registration to more general point cloud registration approaches. In section 5.2, we
demonstrate the robustness of the proposed registration pipeline with respect to noise and outliers using a 2D synthetic
phantom that resembles the stent structure. In section 5.3, we illustrate the nonconvexity of the problem and the effec-
tiveness of the L-curve method for selecting a regularization parameter using a realistic 3D software phantom. In the
subsequent section, we present results for bioabsorbable stent reconstruction for 2 patients in Section 6.

5.1 Illustrating the difference to point-to-point registration
We illustrate the difference of polyline-to-point-cloud and point-to-point registration using a synthetic 2D data set. The
data set, illustrated in Figure 2, consists of a parallelogram and an affinely transformed version and is designed to clearly
show differences polyline and more general point cloud registration approaches. Here, we use the coherent point drift
(CPD) algorithm,29 which addresses registration of 2 point sets as a probability density estimation problem.

A significant difference between both approaches is the representation of the template object. Our approach describes
the template parallelogram as a polyline with 4 vertices and edges (ie, nv = ne = 4) and the reference object using randomly
chosen points on the edges. Here, we randomly choose 10 points per edge yielding np = 40 points. In the CPD approach,
the template object needs to be represented using a point cloud. We test 2 different representations. First, we represent
the parallelogram by its 4 corners. Second, we add the midpoints of the edges. The choice of the number of points used
to represent the template data stems from a trade-off between accuracy and efficiency.

We compare the proposed polyline registration and CPD using an affine transformation model; see Figure 2 for results.
As to be expected, the accuracy of the CPD algorithm depends crucially on the number of points used to represent the

template object. We observe a larger mismatch between the transformed template and the reference parallelogram when
representing the template object using its 4 corners and a smaller misfit when adding the midpoints. Preferable results
are obtained by the proposed method, as skeletal structure of the data is represented more efficiently.

Clearly, the differences between both approaches will be reduced when adding more points to the representation of
the template object in CPD or other point cloud registration approaches; however, this goes hand in hand with increased
computational costs.

5.2 2D stent-resembling polyline
We validate our approach for a 2D dataset consisting of a polyline and a point cloud generated after applying a known
nonlinear deformation. This example is designed to mimic the stent reconstruction problem in 3D addressed in Section 6.

CPD setup-4cPolyline setup

CPD result-4cPolyline result

CPD setup-mp

CPD result-mp

FIGURE 2 Comparison of polyline and point cloud registration approaches using a synthetic 2D data set consisting of a parallelogram
(black) and its affinely transformed version (red). Left column: polyline setup (top) and registration results (bottom) where template (red) is
represented using the 4 edges of the rectangle. Center column: CPD setup (top) and registration results (bottom) using only 4 corners to
represent template object. Right column: CPD setup (top) and registration results (bottom) after adding midpoints. In the CPD results, we use
dashed lines to help visualize the polyline structure of the object. CPD, coherent point drift
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FIGURE 3 Results of 4-step pipeline for a synthetic 2D example with ground truth. Here, the dataset is obtained from nonlinear
deformation of the polyline with white noise, where np = 200. Top row shows registration results at all intermediate steps. The SSD function
is used as distance measure to drive the registration and the error of the computed solution with respect to the ground truth is reported.
Bottom row shows the convergence of the method in terms of the objective function value (left) and norm of the gradient (right), respectively

To generate the data set, we first define a polyline with vertices and edges (here, nv = 46,ne = 50) and collocate a nonlinear
parametric transformation on a rectangular grid surrounding the polyline. We use cubic B-splines to parameterize the
transformation and adjust the weights such that the deformation introduces translation, compression, and distortion,
which are expected for the real data showing a stent implanted into patient's coronary artery; see Figure 3. We then
interpolate the transformation on the vertices of the polyline to get a deformed polyline and sample points along its edges
(here, np = 200). To account for inaccuracies of the point classification, we add independent and identically distributed
Gaussian white noise.

Results of the 4-step pipeline described in section 4.1 are visualized in Figure 3. For this data set, the hyperelastic
registration step is performed using a rectangular grid consisting of 10 × 4 cells that surrounds the affinely preregistered
stent. The number of cells is chosen rather small to achieve additional regularization. We choose empirically 𝛼 = 0.8 in
(10), and in (8), let c → ∞ for rigid, affine, and hyperelastic registrations, to ensure overall alignment of the polyline with
the data. Finally, we perform a nonparametric registration with 92 (2 × nv) degrees of freedom. We reject outliers with
c = 2, and to regularize the problem, we let 𝛼 = 0.5, 𝜆 = 0.8, 𝜇 = 2 in (9). As shown in the bottom row of Figure 3, the
Gauss-Newton method converges within a few number of iterations. Computation time is respectively 0.43, 0.50, 0.54,
and 0.32 seconds for rigid, affine, hyperelastic, and nonparametric registrations.

We also compare the robustness of the distance measures, DSSD and DEuclid, and different sets of regularization param-
eters to outliers. Fixing the previous dataset (where np = 200), we add a set of outliers drawn from a uniform distribution
with x values taken from [−2.5, 2.5], and y values from [−1, 11]. The number of outliers is increased from 0 and 100 in
increments of 10, and registration is performed for each experiment in both distance terms. For the smoothed Euclidean
distance, we use 𝛽 = 10−2. We experimentally tune the regularization parameter 𝛼 in (9), and to simplify the search, we
fix the ratio between the diffusion and the length term as 𝜆 = 0.8, 𝜇 = 2 and perform the registration for 𝛼 taken from
21 logarithmically spaced points between 10−2 and 101. After each registration, we compute the error between the esti-
mated transformation and the ground truth, which is known in this case. We repeat each experiment a hundred times
and observe the relationship between optimal 𝛼 values for different numbers of outliers, as well as their corresponding
error to the ground truth. As expected and shown in Figure 4, the smoothed Euclidean distance is more robust against
outliers and yields better reconstructions as the number of outliers increases.

5.3 3D phantom registration
In this example, we illustrate the nonconvexity of the optimization problem and the effectiveness of our strategy for
choosing the regularization parameter using a synthetic 3D stent phantom. The data set is derived from a realistic stent
geometry and contains the different components of the stents (see the next section). Here, we consider a polyline with 5
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FIGURE 4 Optimal 𝛼 value and corresponding error to the ground truth in the 2D example, when different number of outliers are tested.
Results using sum-of-squared difference (SSD) and smoothed Euclidean with 𝛽 = 10−2 as distance measures are shown. The experiment is
run a hundred times, with 𝛼 is taken from a sample of 21 logarithmically spaced values from 10−2 to 10 (plotted here in log scale), and outliers
from 10 equally spaced points in the interval [0, 100]. The distribution of 𝛼 and error are illustrated here with a box plot, data shown are
within 2.7 standard deviation. To observe the trend, the mean value in each case is connected. On the left, optimal 𝛼 is in general greater for
smooth Euclidean; on the right, error increases as the number of outliers increases, and smooth Euclidean distance is observed with smaller
errors in cases with more outliers (here, greater than 30)

FIGURE 5 Registration results for 3D software phantom. Top row (left to right): 3D deformed polyline with 5 rings (black), sampled data
with white noise (black dots), and 3-step reconstructed results (gray) imposed on data. The errors are computed using DSSD, with respect to
the ground truth. Bottom row: nonconvexity of DEuclid demonstrated by rotating the 3D data around its main axis. Computing the distance for
each rotation results in (at least) 2 local minima (visualized as red dots) (left). L-curve plot using 101 logarithmically spaced values of 𝛼
between 102 and 10−5 and showing the selected value 𝛼 = 0.0603 marked by a red square (center). Runtime per iteration of nonparametric
registration for different values of 𝛼. The optimal value 𝛼 = 0.0603 by the L-curve is marked by a red square

rings, and to simulate the patient-specific data, we apply a 3D linear spline transformation that introduces compression
and distortion of the stent. A point cloud is obtained by sampling the deformed model and adding Gaussian white noise.

The initial and deformed polyline and the generated test data are shown in Figure 5. Here, the dataset consists of
np = 864 point, and the polyline representing a 5 ring stent consists of nv = 276 vertices and ne = 288 edges. Results of
the 3-step pipeline using rigid, affine, nonparametric registration, described in section 4.1 can be found in Figure 5. We
use DEuclid as a distance measure due to its robustness where the conditioning parameter, 𝛽, is empirically set as 0.5. We
report errors of the transformed template with respect to the ground truth, ie, the deformed polyline.
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To illustrate the nonconvexity of the objective function, we rotate the template object around its main axis and show
the misfit in the second row of Figure 5. To increase the chances of computing the global minimizer, we initialize the
affine registration with 6 different starting guesses associated with different rotation angles. Finally, we choose the result
that minimizes the objective function to initialize the nonparametric registration. To increase robustness against false
correspondences, here, we reject data by letting c = 2.8 in (8).

We use the L-Curve criterion45 to determine an appropriate value of 𝛼 in (9). The criterion does not make use of the
ground truth transformation and can thus be used in real applications albeit there is no theoretical guarantee that an
“optimal” value is found. We also stress that automatic choice of optimal regularization parameters, especially for non-
linear inverse problems, is an open research problem. To simplify the search for the regularization parameters needed in
nonparametric registration, we keep the weights of the individual terms fixed at 𝜆 = 2 and 𝜇 = 1.2. We sample 101 loga-
rithmically spaced points between 102 and 10−5, perform nonparametric registration, and compute the distance between
the dataset and the transformed polyline, as well as the value of the regularizer, Snp; results are shown in the second row
of Figure 5. Finally, following the L-curve methodology, we select a corner by visual inspection, which in this case yields
the regularization parameter 𝛼 = 0.0603. The computational time per value of 𝛼 is between 0.4 and 1 second and does not
depend strongly on the actual value; see bottom rightmost plot in Figure 5.

Following the above steps, we obtain the transformed template polyline whose distance to the ground truth is 0.693,
with the largest term in the sum being 0.244. This is relatively small in the scale of our simulated polyline, which spans
across a 3D rectangle of size 4 × 10 × 2.

6 3D BIOABSORBABLE STENT RECONSTRUCTION

We provide a brief description of our stent reconstruction pipeline and its use in CFD analysis in section 6.1. We then
discuss the incorporation of the proposed registration methods into the pipeline and show registration results for 2 patients
in section 6.2.

6.1 The basic geometrical reconstruction procedure
Our specific interest in hemodynamics of bioabsorbable stents comes from their abnormal thickness, designed to handle
pressure and stress during and after the deployment. As opposed to metallic stents, which due to their small size have
minor impact on the blood flow, bioabsorbable stents may negatively affect outcomes since the local hemodynamics may
be adversely affected leading to remodeling and reocclusion. Computational fluid dynamics may provide a quantitative
assessment of these speculations.

To enable extensive CFD simulations over a large number of patients in the framework of computer-aided clinical trials,
we have set up a procedure to (semi-)automatically reconstruct the vascular geometry of a specific coronary artery after
deployment of a bioabsorbable stent. The current procedure (without registration of the undeployed prosthesis presented
in this paper) was validated with a virtual phantom and illustrated extensively in Yang et al.15 For the sake of completeness
and better understanding of the impact of the present contribution, we recall its basic steps.

1. Strut detection in OCT images (see Figure 6): The large struts are prone to an easy detection for rectangular regions
in the OCT images. Most of the struts are identified automatically, even if a manual check is required for possible
corrections. Note that the shadow of the catheter in the OCT images prohibits identifying the position of all the struts.

FIGURE 6 Left: example of an optical coherence tomography (OCT) image of a slice of a coronary artery with a bioabsorbable stent. White
dots denote the struts of the stent. Middle: geometry of the undeployed stent. Right: overlapping of a 3D volumetric reconstruction on the
real OCT image
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2. Point cloud computation: the 3D coordinates of the center of mass of each strut are stored as a point cloud.
3. Categorization: The stent in its undeployed configuration features 2 elementary components, the “rings,” ie, the cir-

cular structures with a wavy profile, and the “vertical connectors” or “beam,” connecting pairs of rings. To proceed
with the geometrical reconstruction, we classify the points of the cloud as part of the different components. This step
is currently done manually, through a graphical user interface specifically developed for this purpose.

4. Piecewise skeletonization: after the categorization, the points of each component (ring or beam) are used for spline
interpolation yielding a wireframe representation of the patient-specific stent.

5. Volumetric reconstruction: from the skeleton, we obtain a 3D volume by expanding the rectangular shape around the
interpolating lines according to an intrinsic frame of reference. Special procedures are undertaken for managing the
intersection between different components—see Figure 6.

6. Bending: as OCT images are obtained from inside the vessel, accurate information about the centerline in space is miss-
ing. Thus, registration of OCT with images from other modalities able of detecting the real 3D profile of the coronary,
like bi-planar angiography, is required. This is done by the commercial package Meddis (see www.medis.nl). Once
the real 3D centerline of the coronary is obtained, a map from the rectilinear to the curved centerline is applied to the
stent so to have the real 3D volumetric reconstruction on the bent artery.

7. Stented lumen reconstruction: After a standard reconstruction of the lumen (with no struts) with the Vascular Mod-
eling ToolKit (see www.vmtk.org), we extract the stented lumen volume by boolean subtraction of the stent to
the lumen. This step is performed by commercial packages like Rhinoceros (www.rhino3d.com) and NetFabb
(www.netfabb.com). The stented lumen—generally after several manual repairing operation—is ready for meshing
and eventually hosting CFD simulations.

Finally, CFD simulations and postprocessing (in particular, the computation of the wall shear stress) can be undertaken
according to standard procedures largely validated in the literature (see, eg, Passerini et al51).

The registration procedure presented in this paper occurs precisely between the point cloud after step 2 and the skeleton
of the undeployed stent extracted from the original design—Figure 6—as the collection of the centers of mass of rings and
beams. It is sought to replace steps 3 and 4, as it automatizes the categorization procedure, and it includes information
unaccessible from the patient-specific data that guides the skeletonization (ie, filling the gap induced by the catheter
shadow). We examplarily demonstrate the registration in the next subsection using 2 patient data sets of a larger data set
(a total of 16 patients have been simulated so far on post-op morphologies).

Remark 1. Our registration procedure is not limited to reconstructing bioabsorbable stents. For example, in the case
of metallic prostheses that feature smaller struts, only the first 2 steps of the pipeline need to be changed (most impor-
tantly strut detection). For metallic stents, the accuracy of the strut detection of step 1 may be reduced, and thus
our registration procedure may provide less reliable results. However, we are positive that appropriate strut-detection
techniques can be used for metallic stents with minor adjustments.

6.2 Registration of the bioabsorbable stent
To increase the robustness of the approach in the presence of highly nonlinear transformations, we divide the data sets
into a small number of longitudinal sections that are processed independently and finally combined. The first data set
corresponds to a 17-ring stent, which we divide into 4 sections, and the second data set corresponds to a 23-ring, which
we divide into 5 sections.

The point cloud and the preoperative stent model for the top 5 rings of the first data set are shown in Figure 7. The
polyline object in this example consists of nv = 276 vertices and ne = 288 edges, and the point cloud consists of np = 421
points. As in the phantom case, we follow a registration pipeline using rigid, affine, and nonparametric transformations,
shown in Figure 7. For distance measure, we choose the robust DEuclid, and let 𝛽 = 0.5 as before. After rigid registration, we
rotate along the main axis of the polyline 6 times, as initial guesses for affine registration. This is to issue the nonconvexity
of the objective function (see Figure 7), as discussed in section 5.3. We reject data by again letting c = 2.8 in (8), to achieve
robustness.

To determine the regularization parameters in (9), we use the L-curve criterion for the first section of each patient data
set. We fix 𝜆 = 2, 𝜇 = 1.2, perform the nonparametric registration using 151 logarithmically spaced values of 𝛼 between
106 and 10−10, and identify a corner in the L-curve by visual inspection. This gives the value 𝛼 = 1.359 used to obtain the
solution for this section (see Figure 7) and the parts of the data.
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FIGURE 7 Three-dimensional registration result for a section of a bioabsorbable stent extracted from patient data. First row shows the
intermediate and final results for the 3-step registration pipeline. Second row shows the nonconvexity of DEuclid and the L-curve for 151
logarithmically spaced values of 𝛼 between 106 and 10−10. The value of 𝛼 = 1.359 is marked by a red square

FIGURE 8 Final results for optical coherence tomography–based reconstruction of bioabsorbable coronary artery stents for 2 patients with
17 rings (left) and 23 rings (right)

The nonparametric registration requires to solve for a vector v of length 3 × nv = 828. To accelerate the search for the
closest edge, we compute the closest vertex using a Delaunay triangulation (here, 1555 tetrahedra) and then select the
projection onto one of the 2 to 3 adjacent edges as the corresponding point. While this does not necessarily give the closest
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point on the polyline, the approximation speeds up computation considerably. The registration process takes 40 iterations
in total, with, respectively, 2.04, 1.89, and 1.35 seconds for rigid, affine, and nonparametric transformations.

Applying the same steps to the remaining sections of the data set reduces the smoothed Euclidean distance from
approximately 3.67 × 104 to DEuclid ≈ 9.68; see also Figure 8. The overall runtime for the registration process is
24.38 seconds.

We apply the same pipeline to the second dataset consisting of 23 rings where the L-curve criterion gives the reg-
ularization parameter 𝛼 = 0.955; see right plot in Figure 8. Using this value, the overall distance is reduced from
DEuclid ≈ 2.31 × 104 to DEuclid ≈ 10.97. The total runtime in this case is approximately 34.15 seconds.

7 DISCUSSION

One key idea of our new numerical methods for nonlinear polyline-to-point-cloud registration is to exploit the poly-
line structure to compute the correspondence between the line and a given point by projection onto the edges of the
polyline. We show that this assignment is (almost everywhere) differentiable with respect to the deformation, and
derivatives are easy and efficient to compute, thus enabling fast optimization. In contrast to similar point-to-point reg-
istration such as Fitzgibbon,40 we compute derivatives analytically and thereby avoid unnecessary function evaluations
and nearest-neighbor searches. These searches are a computationally challenging part in many point-cloud registration
approaches, and our method can be extended to benefit from accelerated search strategies, for example, using kd-trees.52

The differentiability and the potential of efficiently describing data with skeleton structure are key advantages over
commonly used point-to-point registration algorithms based on iterative closest point (ICP).

We formulate the registration as an unconstrained optimization problem that supports the most commonly used dis-
tance measures and transformation models. We provide 2 methods for regularizing nonlinear deformations. Maximal
flexibility is obtained using a nonparametric transformation model, which directly transforms the vertices of the polyline.
In this case, we derive a regularizer ensuring smoothness and penalizing length changes caused by the transformation. It
is important to note that in this approach, invertibility of the transformation is not guaranteed. In other words, transfor-
mations that cause edges of the polyline to intersect give a finite value of the regularizer and thus might be attained. To
avoid this, we also suggest a more restrictive method for nonlinear registration that is based on the nonlinear elastic reg-
ularizer described in Burger et al.43 In addition to ensuring invertibility, this approach also allows to limit the flexibility
of the transformation by, for example, discretizing the transformation on a relatively coarse mesh and appropriate choice
of regularization parameters.

We use a Gauss-Newton scheme with Armijo line search to approximately solve the registration problem.
Optimization-based methods have also been shown to be highly effective for point-to-point registration in Castellani and
Bartoli.53 In addition to the correspondence searches, another computationally costly step in the optimization is com-
puting the search direction, which requires solving a linear system involving a positive definite approximation of the
Hessian. In the experiments considered here, the size of the linear system is rather small, and Cholesky factorization is
used. To enable efficient nonparametric registration of polylines with a larger number of vertices, iterative linear solvers
can be used.

Clearly, our formulation requires that one object is given as a polyline. While this is a limitation in some applica-
tions, our work can also be applied for registration of vascular objects; see, for example, Beuthien54 and Groher et al.55

One advantage of integrating polyline registration into an image registration framework such as FAIR is the potential
of combining image, polyline, and point cloud data. This will be a major item of future work. Our methods support
polylines of arbitrary topology, a wide range of transformation models (such as rigid, affine, and nonlinear transfor-
mations), most commonly used distance measures, as well as physically motivated regularization. Here, we use the
FAIR package as a computational tool and integrate our methods into this general purpose registration framework;
see Modersitzki.1

Our methods bear similarities with methods for registration of point clouds. For example, nonrigid registration of point
clouds has been explored in Chui and Rangarajan44 using thin-plate spline. Probabilistic methods have also been intro-
duced; eg, the CPD algorithm29 addresses point matching with a Gaussian mixture model. Nonrigid registration of surfaces
is discussed, eg, in Amberg et al,39 as an extension of the ICP algorithm, using affine transformations with locally affine
regularization. The ICP algorithm and many of its variants follow a pipeline of correspondence search and transformation
update using a closed-form minimization.30,36,37,39,56,57 Note that the correspondence search is computationally expensive,
since in a naive implementation, it requires finding the nearest neighbor in the reference object for each point of the
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template object. While this process can be significantly accelerated, for example, using tree-based data structures,52 the
complexity in general grows with the number of elements in both point clouds, and, thus, representing the undeployed
stent as a polyline increases the efficiency and also leads—as we will show—to an (almost everywhere) differentiable
problem.

In practice, our resulting registration problems are solved within seconds requiring only a few iterations of a
Gauss-Newton method, thus limiting further the number of (expensive) correspondence searches. In this sense, our
method is similar to the Levenberg-Marquardt method proposed in Fitzgibbon,40 but with 2 major distinctions. First, we
compute the derivative of the point-to-point correspondence analytically instead of approximating it using finite differ-
ences. This avoids additional correspondence searches and the choice of a step parameter for the finite difference scheme.
Second, we use physically inspired regularization, which by design leads to a positive definite approximate Hessians. It
has been shown in Fitzgibbon40 that optimization-based algorithms are more flexible and competitive to special-purpose
methods such as ICP that rely on closed-form solutions. In addition, instead of iterating between neighbor search and
computing the transformation, a general purpose optimization scheme allows us to jointly compute the correspondence
estimation and the transformation.

We present 4 numerical experiments to demonstrate the potential of our methods.
First, we use a simple 2D example to illustrate the differences of our method to general point cloud registration

approaches. In particular, a polyline object uses knowledge of the structure of a given point cloud and shows significant
advantages in terms of registration accuracy.

Second, we consider a 2D academic test problem with available ground truth transformation to study the robustness
of our method to outliers. We find that the smoothed Euclidean distance measure outperforms the SSD function in the
presence of a large number of outliers.

Using a 3D software phantom resembling the structure of a cardiovascular stent, we show the nonconvexity of the
problem and validate our L-curve-based strategy for choosing the regularization parameter; see also Hansen.45

Finally, we use our methods for reconstructing bioabsorbable stents from OCT-data for 2 patients. To enable
patient-specific analysis, we aim at aligning a polyline representing a preoperative cardiovascular stent to a point cloud
representing locations of the stent after surgery. In our experiments, we found that dividing the data sets into smaller
sections considerably reduces the risk of being trapped in a local minimum when large and nonlinear transformations are
present. This requires some user intervention, and deriving a fully automatic process is an important item of future work.

In all experiments, good registration results are obtained in only a few number of Gauss-Newton iterations and, thus,
requiring only a small number of nearest-neighbor searches.

7.1 Conclusions and perspectives
The real-life example illustrates the potential of our method to further automize patient-specific stent reconstruction from
postsurgery images. Our techniques will positively impact the current methodology described in Yang et al15—where no
registration procedure is currently performed—in 2 ways. First, interpolation procedures for the rings and beams of the
stents have been observed to be error prone at the junctions among them. Currently, the junctions are managed by an
empirical intersection of the different parts and require manual intervention. The procedure illustrated here introduces
prior knowledge about the location of the intersections and is thus expected to improve the regularity and reliability of
the reconstruction. Second, the procedure in Yang et al15 is intended to be used in clinical trials involving a large number
of patients.14,58-60 Thus, automation is of great relevance. The approach in Yang et al15 requires a manual identification
of the different components (rings and beams) that drives the interpolation and intersection procedures. As it is easy
and convenient to label the different components on the undeployed configurations (which has to be done only once per
stent model), the registration approach presented here naturally performs the labeling as a by-product of the mapping of
labeled (undeployed) lines. In this way, we can eliminate the need for manual identification of rings and beams in each
patient dataset. This will reduce the computational costs, as no manual procedure is required, with a significant impact
on the usability of the geometrical reconstruction in clinical trials.
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