
Global Sensitivity Analysis in a Mathematical Model of the

Renal Interstitium

Mariel Bedell, Carnegie Mellon University

Claire Yilin Lin, Emory University

Emmie Román-Meléndez, University of Puerto Rico Mayaguez

Ioannis Sgouralis, National Institute for Mathematical and Biological Synthesis

Abstract

The pressure in the renal interstitium is an important factor for normal kidney function. Here

we develop a computational model of the rat kidney and use it to investigate the relationship

between arterial blood pressure and interstitial fluid pressure. In addition, we investigate how

tissue flexibility influences this relationship. Due to the complexity of the model, the large num-

ber of parameters, and the inherent uncertainty of the experimental data, we utilize Monte Carlo

sampling to study the model’s behavior under a wide range of parameter values and to compute

first- and total-order sensitivity indices. Characteristically, at elevated arterial blood pressure, the

model predicts cases with increased or reduced interstitial pressure. The transition between the

two cases is controlled mostly by the compliance of the blood vessels located before the afferent

arterioles.
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1 Introduction

Kidneys are the core organs in the urinary system. Their principal functions are to remove meta-

bolic waste from the blood and to regulate blood salt and water levels [6]. Through the regulation

of salt and water, kidneys also play an important role in the regulation of arterial blood pressure

[4, 37]. To perform these functions, each kidney adjusts the composition of the urine it produces.

Each kidney has an outer layer, called the cortex, and an inner layer, known as the medulla [17].

Much of the space in these regions is filled by the functional units of the kidney, which are termed

nephrons. Depending on the organism, each kidney contains thousands to millions of nephrons.

Nephrons are responsible for the production of urine.

Kidneys contain two types of nephrons, cortical (short) and juxtamedullary (long) nephrons,

each of which is surrounded by a net of capillaries. Cortical nephrons remain almost entirely in

the cortex, while juxtamedullary nephrons extent deep into the medulla. Each nephron consists of

a glomerulus and a renal tubule. Further, each renal tubule consists of various permeable or imper-

meable segments [6, 17]. Additionally, each nephron has access to a collecting duct for removal of

the produced urine.

Kidneys are connected with the rest of the body by two blood vessels, the renal artery, which

carries blood into the kidney, and the renal vein, which carries blood out of the kidney to recir-

culate the body. In addition, urine is excreted from the body through the ureter. Blood coming

from the renal artery is delivered to the afferent arterioles. A steady flow of blood coming from

the afferent arteriole of a nephron is filtered in the glomerulus and flows into the renal tubule.

The blood flow is maintained constant in each glomerulus by the constriction or relaxation of its

afferent arteriole [13, 34]. Nearly all of the fluid that passes through the renal tubules is reabsorbed

and only a minor fraction results in urine. Fluid is reabsorbed from the renal tubules in two stages:

first by the renal interstitium and then by the surrounding capillaries. The processes underlying

reabsorption are driven by the pressures in the interstitial spaces [4, 37].

Although the pressures in the renal interstitium are important determinants of kidney function,

there is a lack of investigations that look at the factors affecting them. Here we develop a compu-
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Figure 1: Schematic diagram of the model kidney. The diagram shows the arrangement of blood
vessels (red) and nephrons (yellow) within the interstitial spaces (grey). With the exceptions of
the capillaries, the schematic displays only one of each of the different compartments contained in
the full model. Nodes c1–c32 mark the connections of the compartments. For details see main text
and Table 1.

tational model of the rat kidney, for which several experimental data exist, and use it to study the

relationship between arterial blood pressure and interstitial fluid pressure. In addition, we study

how tissue flexibility affects this relationship and how the model predictions are affected by the

uncertainty of key model parameters. We model the uncertain parameters as random variables

and quantify their impact using Monte Carlo sampling and global sensitivity analysis.

2 Methods

2.1 Model Description

The model consists of a collection of compartments that follow the characteristic anatomy of the

kidneys of mammals [17, 20]. The compartments fall in three categories: (i) regions that model the
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cortical and medullary interstitial spaces, (ii) pipes that model the blood vessels and renal tubules,

and (iii) spheres that model the glomeruli. A schematic diagram depicting the arrangement of

the compartments (1–35) is shown on Figure 1 and a summary is given in Table 1. To facilitate the

description of the model equations below, we use a set of nodes (c1–c32) that mark the connections

of the compartments; these nodes are also included in Figure 1 and Table 1.

Briefly speaking, blood enters through the renal artery (node c1) and splits into a number of

large arteries (compartments 3–5) that drain to the afferent arterioles (compartments 6 and 12).

Each afferent arteriole supplies one glomerulus (compartments 21 and 27). In the glomeruli, blood

is divided between the efferent arterioles (compartments 8 and 14) and the renal tubules (com-

partments 22–26 and 28–32). Leaving the efferent arterioles, blood passes through the cortical

microcirculation (compartments 9 and 10) or the medullary microcirculation (compartments 15–

18), before it rejoins in large veins (compartments 11, 19, 20) and leaves through the renal vein

(node c18).

The model represents short (compartments 21–26) and long nephrons (compartments 27–32)

that both drain in the same collecting duct (compartments 33–35), which, in turn, drains to the

ureter (node c32). The model accounts for the spacial as well as the anatomical differences be-

tween the two nephrons that are developed in the mammalian kidney [17, 20]. For example, the

model accounts for differences in the location within the cortex or medulla, in the pre- and post-

glomerular vascular supply, dimensions, reabsorptive capacity, etc.

2.1.1 Model Pipes and Spheres

Blood vessels and renal tubules are modeled as distensible pipes. Glomeruli are modeled as dis-

tensible spheres. Fluid flows through a compartment i at a volumetric rate of Qi (Figure 2). Fol-

lowing the physiology, some of the pipes are considered permeable while others impermeable [6].

For simplicity, we assume that the only pipes modeling blood vessels that are permeable are those

that model capillaries.

The flow that passes through the walls of a permeable pipe is denoted by Ji. According to the

common convention, Ji > 0 denotes fluid leaving the pipe and Ji < 0 fluid entering the pipe. Due
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Figure 2: Model pipes. A: impermeable pipe. B: permeable pipe. For details see main text.

to conservation of mass, the flow that leaves from an impermeable pipe Qout
i is the same as the

flow that enters Qin
i , thus:

Qout
i = Qin

i (1)

while the flow that leaves a permeable pipe is given by:

Qout
i = Qin

i − Ji (2)

We assume that the flow crossing through the walls of renal tubules and glomerular capillaries are

constant fractions of the corresponding inflow:

Ji = fiQ
in
i (3)

where fi is the fraction of fluid that crosses through the pipe’s wall. For the fractional coefficients

fi we use the values listed on Table 1, which are chosen such that the model predicts flows similar

to the antidiuretic rat model in [21].

Flow through the walls of the cortical and medullary capillaries are computed by the Starling

equation [37]

J9 = K9
f (P9 − P1 + π9 − π1) (4)

J16 = K16
f (P16 − P2 + π16 − π2) (5)
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where K9
f = 1.59 µm3/mmHg/min and K16

f = 2.28 µm3/mmHg/min are the filtration coeffi-

cients of the cortical and medullary capillaries and π1, π2, π9, and π16 are the oncotic pressures

and P1, P2, P9, and P15 are the hydrostatic pressures in the associated compartments. The oncotic

pressures are obtained by an approximation of the Landis-Pappenheimer relation

πi = αCi + βC2
i (6)

where α = 1.63 mmHg·dl/gr and β = 0.29 mmHg·dl2/gr2 as used in [5]. In equation (6), Ci

denotes the concentration of protein in the compartment i. We assume a fixed protein concentra-

tion of the blood entering through the renal artery of Ca = 5.5 gr/dl and compute concentrations

throughout the blood vessels (compartments 3–9 and 12–16) by taking into consideration conser-

vation of mass

Cout
i =

Qin
i

Qin
i − Ji

Cin
i (7)

where Cin
i and Cout

i denote the inflow and outflow concentrations of the compartment i. The

oncotic pressures π9 and π16 at equations (4) and (5) are computed based on the averages

C9 =
Cin

9 + Cout
9

2
(8)

C16 =
Cin

19 + Cout
19

2
(9)

In each pipe and glomerulus, the internal pressure is denoted P int
i and the external P ext

i . For

pipes, P int
i is computed by the average of the pressures at the associated inflow and outflow

nodes (Figure 1). For the glomeruli, internal pressure equals to the pressure of the associated

node (Figure 1 and Table 1). For all pipes and glomerulus compartments, the external pressures

equal the internal pressure of the surrounding compartment, which, in the case of the cortical

and medullary regions, are denoted by P1 and P2, respectively. Exceptions to this are the arcuate

arteries and veins (compartments 4 and 19, respectively), which anatomically are located between

the cortex and the medulla [17], so we compute P ext
i for these compartments by the average of P1

and P2.
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The volumes of the compartments, besides the regions and the afferent arterioles (compart-

ments 1, 2 and 6, 12), depend passively on the pressure difference that is developed across their

walls:

Vi = V ref
i + si (P int

i − P ext
i + ∆P ref

i ) (10)

where V ref
i , ∆P ref

i , and si are constants. In particular, V ref
i denotes a reference volume, and

∆P ref
i denotes the pressure difference across the walls of the compartment when Vi equals V ref

i .

The parameters si are a measure of the distensibility of the compartments. A large si value indi-

cates a compartment that is very distensible, while a low value si indicates a more rigid compart-

ment. In the model, we use si ≥ 0 such that an increase in P int
i or a decrease in P ext

i leads to an

expansion of the volume Vi, and vise versa.

For a model pipe, let P in
i and P out

i denote the pressures at its inflow and outflow nodes, re-

spectively. These pressures are related by a modified form of the Poiseuille law:

P in
i − P out

i =
8µiLi

πR4
i

(
Qin

i −
2

3
Ji

)
(11)

where µi is the viscosity of the flowing fluid, Li is the length of the pipe, andRi is its radius. In the

model, we assume µi and Li to be constants, while we compute Ri based on the compartment’s

volume (i.e. Vi = πR2
iLi). Equation (11) reduces to the common Poiseuille equation for the imper-

meable pipes [34], while for the permeable pipes, it is assumed that Ji is linearly distributed along

the length of the pipe with a value of 0 at the end of the pipe.

Pressure at node c1 equals the arterial blood pressure Pa, which in our model is a free vari-

able. Pressures at nodes c18 and c32 are kept constant at 4 mmHg and 2 mmHg, respectively,

in agreement with the values of venous and ureter pressures used in previous modeling studies

[22, 18].

2.1.2 Model Afferent Arterioles

The afferent arterioles are unique vessels in the sense that they actively adjust radii such that blood

flows through them at a fixed rate [13, 34]. In the model, we assume that blood flow in the afferent
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arterioles that feed the short and long nephrons (i.e. Q6 and Q12, respectively) are kept fixed at

280 nl/min and 336 nl/min, respectively, as in previous modeling studies of renal hemodynamics,

for example [21, 8, 32].

We compute the radii of the afferent arterioles by the Poiseuille equation [34], which yields

R6 =
(8µ6L6

π

Q6

Pc4 − Pc5

)1/4
(12)

R12 =
(8µ12L12

π

Q12

Pc3 − Pc10

)1/4
(13)

Note that equations (12) and (13) imply that whenever the pressure difference along the afferent

arterioles Pc4 − Pc5 and Pc3 − Pc10 increases, the radii R6 and R12 decrease. This, in turn, implies

that whenever the arterial blood pressure Pa increases, the afferent arterioles constrict, and thus

the total volumes occupied by them, V6 = πR2
6L6 and V12 = πR2

12L12 are reduced.

2.1.3 Model Interstitial Regions

The cortical and medullary interstitial spaces, i.e. compartments 1 and 2, lie outside of the com-

partments 3–35 and therefore must be calculated separately using a different set of equations. We

obtain the first of such relationships by assuming that the net accumulation of interstitial fluid

within the cortex and medulla is zero. That is

J9 +
J22
80

+
J26
80

+
J28
160

+
J32
160

= 0 (14)

J16 +
J23
500

+
J29

1000
+

J34
72000

= 0 (15)

where the flows Ji are weighted based on the total number of the compartments contained in the

full model (Table 1).

Equations (4) and (5) require the oncotic pressures π1 and π2, which in turn require the cortical

and medullary protein concentrations C1 and C2 for equation (6). Protein concentrations in the

cortical and medullary regions are computed assuming that the total mass of protein contained in
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each region, M1 and M2, respectively, remains constant. Thus,

C1 =
M1

V1
(16)

C2 =
M2

V2
(17)

We use the values M1 = 1.93 mgr and M2 = 1.25 mgr, which are computed such that the resulting

model predicts reference pressures in the renal cortex and medulla of ∼6 mmHg, similar to those

estimated experimentally [4].

Cortical and medullary interstitial volumes V1 and V2 are assumed to change proportionally;

thus,

V1
V2

= κ (18)

where κ is the proportionality constant. The combined volume of the interstitial regions V1 + V2 is

calculated based on the total volume of the kidney V0 according to

V1 + V2 = V0 − Vcortex − Vmedulla (19)

where Vcortex and Vmedulla are found by summing the total volumes of the pipe and glomerulus

compartments contained within each region. Finally, the total volume of the kidney V0 is calcu-

lated by

V0 = V ref
0 + s0 (P1 − P ext

0 + ∆P ref
0 ) (20)

where in this case P ext
0 refers to the pressure external to the kidney, which is set to 0 mmHg.

Equation (20) assumes that the total volume of the kidney is determined by the distensibility of

the renal capsule s0, which is stretched by the difference of the pressures developed across it, i.e.

P1 − P ext
0 .
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2.2 Model Parameters

Values for the model parameters are given in Table 2. These values are chosen such that at a

reference arterial blood pressure P ref
a = 100 mmHg the model predicts pressures and volumes

that are in good agreement with either direct experimental measurements [24, 23, 14, 12, 3] or

previous modeling studies [21, 22, 7, 30, 25, 33, 29, 31, 1].

The pressure-volume relationships used in the model, equations (10) and (20), require values

for the parameters si. We assume that (i) si scale proportionally to the reference volumes

si = σi V
ref
i (21)

and (ii) the coefficients σi depend only on the histology of the associated compartment. That is,

we group the compartments as follows:

• Group G1: renal capsule (s0) and papillary collecting duct (s35)

• Group G2: glomeruli (s21 and s27)

• Group G3: renal tubules (s22–s26) and proximal collecting ducts (s28–s34)

• Group G4: pre-afferent arteriole blood vessels (s3–s5)

• Group G5: post-afferent arteriole blood vessels (s7–s11 and s13–s20)

Then we assign the same flexibility value σi to all members of each group (Table 2). With this

formulation, the model compartments in each histological group experience the same fractional

change in volume whenever they are challenged by the same pressure gradient P int
i − P ext

i .

The available experimental data do not permit an accurate estimate of the values of the flexibil-

ity parameters. For this reason, we treat the flexibilities of the five groups σg as independent random

variables. To facilitate the comparison among the different groups, we set

σg = σ̃gΛg (22)
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Figure 3: Probability densities of the flexibility parameters Λg of the histological groups G1–G5
used in this study.

where σ̃g are constants, and Λg are random variables configured to have mode 1. We estimate the

values of σ̃g empirically based on ex vivo measurements reported in [11, 39, 3, 2, 38] (Table 2).

For each simulation, Λg are drawn from the log-normal distribution (Figure 3), which is chosen

such that (i) sg attain non-negative values, (ii) arbitrarily large values of sg are allowed, and (iii)

low sg values are more frequent than large ones. We choose the latter condition assuming that

the experimental procedures (anesthesia, renal decapsulation, tissue isolation, etc.) utilized in

[11, 3, 2, 38] likely increase rather than decrease tissue flexibility, thus our computed σ̃g likely

overestimate rather than underestimate σg .

Finally, we configure the log-normal distributions such that ΛG1 and ΛG2 have log-standard

deviation of 1.1, and ΛG3, ΛG4, and ΛG5 have log-standard deviation of 1.25 (Figure 3). According

to our experience, such configuration reflects the degree of the uncertainty in our estimated values

of σ̃g , for which we consider σ̃G3, σ̃G4, and σ̃G5 less accurately estimated than σ̃G1 and σ̃G2.
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2.3 Sensitivity Analysis

2.3.1 Formulation

For the sensitivity analysis of the model described in the previous sections, we adopt a variance-

based method which is best suited for non-linear models [28, 36]. Let

y = f(x1, x2, . . . , xk) (23)

denote a generic model, where y is an output value and x1, x2 . . . , xk are some random inputs

(in our case those represent the uncertain parameters). For a factor xg , the first- and total-order

sensitivity indices are given by

Sg =
V(E(y|xg))

V(y)
(24)

Tg = 1− V(E(y|x−g))

V(y)
(25)

respectively, [28, 27, 36]. In the equations above, E and V denote mean value and variance, respec-

tively. In (24), first the mean of y is computed by fixing the factor xg to some value x̃g , and then

the variance of the mean values is computed over all possible x̃g . In (25), first the mean value is

computed by fixing all factors except xg (which is denoted by x−g), and then the variance of the

mean values is computed over all possible x−g .

According to the above definitions, the first-order index Sg indicates the fraction by which the

variance of y will be reduced if only the value of the factor xg is certainly specified [28]. Similar, the

total-order index Tg indicates the fraction of the variance of y that will be left if all factors besides

xg are certainly specified [28]. We compute both indices, because generally for a non-linear model

the factors are expected to interact in a non-additive way, and therefore Tg is expected to be larger

than Sg . The difference Tg − Sg characterizes the extent of the interactions with the other factors

that xg is involved with.
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2.3.2 Evaluation of Sensitivity Indices

To better characterize the contribution of the individual factors Λg of equation (22), in the variance

of P1 and P2, we calculate their first- and total-order sensitivity indices given in (24) and (25). We

compute the indices according to the method proposed by Saltelli [27], which is computationally

less demanding than a straightforward application of the formulas in (24) and (25).

Briefly, according to the Saltelli method we form two input matrices:

MA =



Λ1,A
G1 Λ1,A

G2 Λ1,A
G3 Λ1,A

G4 Λ1,A
G5 Λ1,A

G6

Λ2,A
G1 Λ2,A

G2 Λ2,A
G3 Λ2,A

G4 Λ2,A
G5 Λ2,A

G6

...
...

...
...

...
...

ΛN,A
G1 ΛN,A

G2 ΛN,A
G3 ΛN,A

G4 ΛN,A
G5 ΛN,A

G6


(26)

MB =



Λ1,B
G1 Λ1,B

G2 Λ1,B
G3 Λ1,B

G4 Λ1,B
G5 Λ1,B

G6

Λ2,B
G1 Λ2,B

G2 Λ2,B
G3 Λ2,B

G4 Λ2,B
G5 Λ2,B

G6

...
...

...
...

...
...

ΛN,B
G1 ΛN,B

G2 ΛN,B
G3 ΛN,B

G4 ΛN,B
G5 ΛN,B

G6


(27)

by generating Monte Carlo samples Λj,A
g and Λj,B

g for the factors Λg . Subsequently, for each fac-

tor, we forme a matrix Mg . Each Mg is formed by the columns of MA, except the column that

corresponds to the factor Λg , which is taken from MB . For instance, MG2 is given by:

MG2 =



Λ1,A
G1 Λ1,B

G2 Λ1,A
G3 Λ1,A

G4 Λ1,A
G5 Λ1,A

G6

Λ2,A
G1 Λ2,B

G2 Λ2,A
G3 Λ2,A

G4 Λ2,A
G5 Λ2,A

G6

...
...

...
...

...
...

ΛN,A
G1 ΛN,B

G2 ΛN,A
G3 ΛN,A

G4 ΛN,A
G5 ΛN,A

G6


(28)

We use each row of the matricesMA,MB , andMg to solve the model equations at Pa = 180 mmHg
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and combine the solutions in the vectors:

mk
A =



P 1,A
k

P 2,A
k

...

PN,A
k


, mk

B =



P 1,B
k

P 2,B
k

...

PN,B
k


, mk

g =



P 1,g
k

P 2,g
k

...

PN,g
k


(29)

where k = 1 corresponds to the pressure in the cortical region P1, and k = 2 to the pressure in the

medullary region P2. The first- and total-order sensitivity indices are then computed by

Sk
g =

1
N−1

∑N
j=1

(
P j,A
k P j,g

k

)
− 1

N

∑N
j=1

(
P j,A
k P j,B

k

)
V
(
mk

A

) (30)

T k
g = 1−

1
N−1

∑N
j=1

(
P j,B
k P j,g

k

)
−
(

1
N

∑N
j=1 P

j,B
k

)2
V
(
mk

B

) (31)

respectively. In the above equations (30) - (31) , V denotes the sample variance. For further details

on the method, see [27].

2.4 Numerical Methods

For the numerical solution, we combine the model equations (1)–(20) into a system of 69 coupled

non-linear equations. Given a value for the arterial blood pressure Pa and a choice for the flex-

ibility parameters Λg , the resulting system is solved to yield the values for the pressures at the

interstitial regions P1 and P2, the pressures at the model nodes Pc1–Pc32, and the volumes of the

compartments V1–V35.

To obtain solutions, we implement the system in MATLAB and use the standard root-finding

function (fsolve). This function computes solutions to the model equations iteratively by starting

from a given initial approximation. For the initial approximation we use the reference values from

literature (Table 2). Note that by the construction of the model, the solution at reference can be

obtained trivially, and thus no root-finding is necessary for this step.
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3 Results

3.1 Selected Case Studies

In the first set of simulations, we investigate how the pressures in the interstitial regions P1 and

P2 are affected by the arterial blood pressure Pa for selected choices of the flexibility parameters

when Pa varies in the range 80–180 mmHg. In particular, we make the following choices for the

flexibility parameters:

• Case 1: ΛG1 = ΛG2 = ΛG3 = ΛG4 = ΛG5 = 0

• Case 2: ΛG1 = ΛG2 = ΛG3 = ΛG4 = ΛG5 = 1

• Case 3: ΛG1 = ΛG2 = ΛG3 = ΛG4 = ΛG5 = 4

• Case 4: ΛG1 = 2.7, ΛG2 = 0.04, ΛG3 = 0, ΛG4 = 0.27, ΛG5 = 0.2

Figure 4 shows key solution values.

Case 1 corresponds to a kidney with rigid compartments. In this case, pressure does not affect

the volume of the compartments except of the two afferent arterioles V6 and V12. For example, at

elevated Pa, the pressure differences along the afferent arterioles Pc4−Pc5 and Pc3−Pc10 increase.

As a result, the arterioles constrict in order to maintain constant blood flow (equations (12) and

(13)). Given that total kidney volume V0 does not change as given by equation (20), the reduction

in afferent arteriole volume increases the volume of the interstitial regions V1 and V2 given by

equation (18). In turn, increases in interstitial volumes reduce the protein concentrations C1 and

C2 by equations (16)–(17) and the oncotic pressures π1 and π2 that promote uptake J9 and J16

of interstitial fluid by equations (4)–(5). However, due to tubular reabsorption J22–J34, the flow

of fluid into the interstitial spaces is kept constant (equations (14) and (15)). Thus, in order to

maintain a constant uptake and avoid accumulation of interstitial fluid, P1 and P2 increase. Vise

versa, a decrease in Pa has the opposite effects and results in a decrease of P1 and P2. Because

the total volume of the afferent arterioles is only a minor fraction of the volume of the interstitial

regions (∼2%, see Table 2), even large changes of R6 and R12 induce small changes of π1 and π2.

14



P
a
 (mmHg)

80 100 120 140 160 180

R
6
 (
7

m
)

8

10

12

14

P
a
 (mmHg)

80 100 120 140 160 180

R
12

 (
7

m
)

8

10

12

14

case 1
case 2
case 3
case 4

P
a
 (mmHg)

80 100 120 140 160 180

P
1
 (

m
m

H
g)

5

6

7

8

9

P
a
 (mmHg)

80 100 120 140 160 180

P
2
 (

m
m

H
g)

5

6

7

8

9

Figure 4: Model predictions for selected parameter choices. Upper panels: radii of the afferent
arterioles. Lower panels: pressures in the interstitial regions.

Therefore, the total change in P1 and P2, across the full range of Pa variation, is in the order of

0.1 mmHg (see blue curves in Figure 4).

Case 2 corresponds to a kidney with distensible compartments. This case is similar to case 1;

however, the changes of P1 induced by the constriction of the afferent arterioles is followed by

an expansion of the renal capsule (equation (20)), which increases whole kidney volume V0. So,

in this case, the cortical and medullary interstitial volumes V1 and V2 increase to a larger extent

compared with case 1 in order to accommodate the expansion of V0. As a result, interstitial protein

concentrations C1, C2, and oncotic pressures π1, and π2 drop by larger amounts than in case 1.

Consequently, significant drops in P1 and P2 follow (see orange curves in Figure 4).

Case 3 corresponds to a kidney with very flexible compartments and renal capsule. Through

the same effects as in cases 1 and 2, changes in arterial pressure Pa lead to similar changes in P1
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and P2. Because in this case the expansion of whole kidney volume V0 is greater than in case 2,

due to the increased flexibility of the renal capsule s0, the interstitial pressures are affected to a

greater extent too (see yellow curves in Figure 4).

Case 4 shows a different behavior that corresponds to a kidney with flexible capsule but rel-

atively rigid compartments. As in all cases, Pa affects severely the pressures in the pre-afferent

arteriole vascular compartments P3, P4, and P5 (equation (11)), which are not regulated by the ac-

tive constriction/dilation of the afferent arterioles. As a result, whenever Pa increases, P3, P4, and

P5 also increase, leading to an increase of the associated pre-afferent arteriole vascular volumes V3,

V4, and V5. Note that the increase of V3, V4, and V5 opposes the reduction of V6 and V12 caused by

constriction of the afferent arterioles. In this particular case, opposite to what happens in cases 1-3,

the increase of the total volume of the pre-afferent arteriole compartments V3, V4, and V5 exceeds

the reduction of the total volume of the afferent arterioles V6 and V12. As a result, the interstitial

regions are compressed, which in turn leads to increases of the protein concentrations C1 and C2

and oncotic pressures π1 and π2. Because the uptake of interstitial fluid is maintained constant,

this leads to reductions of P1 and P2. Finally, the reductions of P1 and P2 are further amplified by

constriction of the renal capsule that follows the reduction of P1.

3.2 Sensitivity Analysis

From the previous section, it is apparent that the predictions of the model depend on the choice of

the flexibility parameters Λg , which are not well-characterized (Section 2.2). To assess the degree

to which different choices affect the pressures in the interstitial regions P1 and P2, we sample the

parameter space. For each sample point, we evaluate the model solution at an elevated arterial

blood pressure Pa. For all simulations, we keep Pa constant at 180 mmHg.

3.2.1 Summary Statistics

The model utilizes 5 factors that correspond to the flexibility parameters associated with the his-

tological groups of Section 2.2. We use a sample size of N = 41× 103 and perform sampling with
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Figure 5: Probability densities of P1 (left panel) and P2 (right panel) at elevated arterial blood
pressure (Pa = 180 mmHg) as estimated by model simulations. Vertical lines indicate the values
at the reference arterial blood pressure (Pa = 100 mmHg).

the Monte Carlo method. The resulting probability densities and cumulative distributions of P1

and P2 are shown in Figure 5.

As can be seen in Figure 5, the model predicts mostly increased P1 and P2 at elevated Pa. How-

ever, the uncertainty in the flexibility parameters Λg induces a significant degree of variability for

both pressures. The mean values of P1 and P2 are 9.1 and 8.6 mmHg, and the standard deviations

are 4.1 and 3.7 mmHg, respectively. Both pressure distributions are heavily skewed towards large

values.

Interestingly, the model also predicts low or even negative pressures. Negative pressure values

indicate that the pressures in the interstitial regions fall below the pressure in the space surround-

ing the kidney P ext
0 , which in this study is set to 0 mmHg. In summary, 84% of P1 and 77% of P2

values at Pa = 180 mmHg are above the corresponding values at Pa = 100 mmHg, and 16% of P1

and 11% of P2 values lie below 0 mmHg or above 15 mmHg.
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Scatter plots between the input factors Λg and the computed pressures P1 and P2 are shown in

Figure 6. Only ΛG4 shows a clear influence on P1 and P2, with high values of ΛG4 being associated

generally with higher interstitial pressures. No apparent trend can be identified for the rest of the

factors. Linear regressions between the computed pressures and the input factors (shown by the

dashed lines in Figure 6) yield low R2. Precisely, R2 for ΛG4 equal 0.25 for P1 and 0.16 for P2. The

rest of the factors yield R2 for 0.02 or less. Such low R2 indicate strong non-linear dependencies of

the interstitial pressures on the input factors, a behavior that most likely stems from the inverse-

forth-power in the Poiseuille law given by equation (11).

Correlation coefficients computed between the input factors Λg and the computed pressures

P1 and P2 are shown on Figure 7 (left panel). As is suggested by Figure 6, ΛG4 is positively

correlated, weakly though, with P1 and P2. From the rest of the factors, ΛG1, ΛG3, and ΛG5 are

negatively correlated with P1 and P2, however to an even weaker than for ΛG4, and ΛG2 shows no

correlation with either P1 or P2.

In contrast to the apparent lack of any trend between the computed pressures P1 and P2 and
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the input factors ΛG4, the model predicts a high degree of correlation between P1 and P2. The

associated correlation coefficient reaches as high as 0.95 (Figure 7 right panel), which indicates

that P1 and P2 are predicted to change in tandem in a seemingly linear way.

3.2.2 Sensitivity Indices

To better characterize the contribution of the individual factors Λg in the variance of P1 and P2, we

calculate their first- and total-order sensitivity indices shown on equations (24) and (25). Details

on the adopted computational methods can be found in Section 2.3.

Figure 8 shows the computed indices. Evidently, the flexibility of the pre-afferent arteriole

vascular segments (group G4) accounts for most of the variation in P1 or P2 with respect to either

the first- or total-order indices. The post-afferent arteriole vasculature (group G5) has the second

most significant contribution. Groups G1–G3 have only minor contributions according to the first-

order sensitivity indices. However, this is not the case with the total-order indices, which indicate

that G1 and G3 are involved to a significant degree in interactions. On the contrary, the glomeruli

(group G2) have only a minor involvement in interactions.

For all groups, it is observed T 1
g < T 2

g and T 1
g −S1

g < T 2
g −S2

g , which indicate that the medullary

pressure P2 is more susceptible to interactions than cortical pressure P1. This behavior is expected,

given that the afferent arterioles (compartments 6 and 12), which initiate the changes in P1 and
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P2, are located exclusively in the cortex, while the medulla is susceptible mostly to secondary

interactions initiated by the expansion/constriction of the renal capsule.

4 Conclusions

We develop a multi-compartmental computational model of the rat kidney. The model is con-

structed using conservation laws (equations (2) and (7)), fluid dynamics (equation (11)), simplified

pressure-volume relationships (equations (10) and (20)), and constitutive equations specific to the

physiology of the kidney (equations (3) and (14)–(15)).
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We assign values to the model parameters (Tables 1 and 2) using experimental measurements

when such measurements were available and previous modeling studies when direct measure-

ments were not available. However, the data required for the flexibility parameters σi are sparse

and do not suffice for an accurate estimation of their values. To that end, we choose to model

these parameters as random variables with probability distributions that permit values spanning

multiple orders of magnitude (Section 2.2 and Figure 3).

To determine the probability distributions of the random variables, we define five histological

groups within the model kidney. Group G1 models thick and relatively inflexible structures, for

which we use pressure-mass data obtained from whole kidneys in dogs [11, 39]. Group G2 models

the glomeruli, for which we use pressure-volume data measured in rats [3]. Group G3 models the

various segments of the nephrons and the proximal parts of the collecting duct, for which we use

pressure-radius measurements of the rat proximal tubule [2]. Groups G4 and G5 model the blood

vessels, for which we use pressure-volume measurements of the systemic circulation measured in

rats [38]. We combine the post-afferent arteriole vasculature in one group (group G5), despite that

it consists of segments of the arterial and venous vascular trees [17]. We are motivated to do so

by the fact that these vascular segments have considerably thiner walls and therefore should be

considerably more flexible than the pre-afferent arteriole segments [26].

Output from the model leads to a range of predictions depending on the choices of the flexibil-

ity values. Generally, increased arterial blood pressure is predicted to increase the pressure in both

interstitial spaces (Figure 5). As arterial blood pressure increases from 100 mmHg to 180 mmHg,

interstitial pressures are predicted to increase on average by ∼3 mmHg. Changes of similar mag-

nitude have been observed in the kidneys of rats [9, 16, 35, 15] and dogs [19, 10]. Upon a lim-

ited number of flexibility choices, however, the model predicts decreased interstitial pressures as

a result. Further, the model predicts a tight correlation between the cortical and the medullary

pressures, Figure 7 (right panel), which is also in agreement with the experimental observations

reported in [9]. Concerning the four case studies of Section 3.1, cases 2 and 3 are in best agreement

with the experimental observations in [9, 16, 35, 15, 19, 10]. In contrast, case 4 deviates from the

experimental observations.
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As arterial blood pressure Pa increases, mainly two distinct pathways that lead to interstitial

pressure P1 and P2 changes can be identified (Figure 9). The first pathway (denoted with red)

leads to increase of interstitial pressure upon constriction of the afferent arterioles. The second

pathway (denoted with blue) leads to decrease of interstitial pressure upon dilation of the pre-

afferent arteriole blood vessels. Primarily, both pathways lead to changes in interstitial volumes V1

and V2, which are subsequently transmitted to protein concentrationsC1 andC2, oncotic pressures

π1 and π2, and finally to P1 and P2. The two pathways have competing effects; the first leads to

changes of P1 and P2 towards the same direction as Pa, while the second leads to changes of P1
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and P2 towards the opposite direction of Pa. It is important to note that, in general, both pathways

are active. However, the model results (Figure 5) indicate that under most circumstances the first

pathway dominates over the second.

The model predictions appear particularly sensitive to the flexibility of the pre-afferent arte-

riole blood vessels (histological group G4) (Figure 8). Such behavior is attributed mostly to the

fact that blood pressure is only regulated by the afferent arterioles, which are located after these

vessels [34]. The lack of pressure regulation, in the pre-afferent arteriole compartments, leads to

larger internal pressure P int
i changes upon increases in arterial pressure Pa than in the rest of the

compartments. For example, as Pa increases from 100 mmHg to 180 mmHg, assuming an increase

in the interstitial pressures of ∼5 mmHg, we see that the compartments of group G4 are stretched

by a pressure difference of ∼70–75 mmHg, while the walls of the rest of the compartments are

stretched by a pressure difference of ∼5 mmHg. Thus, in view of the pressure-volume relations

given by equation (10) the resulting change in total kidney volume V0, which mediates the changes

in interstitial pressures, is mostly affected by sG4 rather than sG1, sG2, sG3, or sG5.

The model developed in this study uses several simplifications. For example, the current model

assumes perfect autoregulation of blood flow for equations (12)–(13), which limits its applicability

to cases with arterial blood pressures between 80 mmHg and 180 mmHg [34]. The model does not

account for the differences in tubular reabsorption, e.g. coefficients fi in (3), occurring between

diuretic and antidiuretic animals or for pressure-diuretic responses [4, 22]. Further, the model as-

sumes linear pressure-volume relationships for equations (10) and (20). Lifting those limitations

requires a more detailed model, the development of which will be the focus of future studies. De-

spite these limitations, the present model could be a useful component in comprehensive models

of renal physiology.
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i Compartment Type Number P int
i P ext

i Nodes Frac. Coeff.
1 Cortical interstitium region 1 P1 - - -
2 Medullary interstitium region 1 P2 - - -
3 Medullary artery pipe 8 P3 P2 c1-c2 0
4 Arcuate artery pipe 24 P4

P1+P2

2 c2-c3 0
5 Cortical radial artery pipe 864 P5 P1 c3-c4 0
6 Afferent arteriolesn pipe 20736 P6 P1 c4-c5 0
7 Glomerular capillarysn pipe 5598720 P7 Pc19 c5-c6 3/28
8 Efferent arteriolesn pipe 20736 P8 P1 c6-c7 0
9 Cortical capillary pipe 1658880 P9 P1 c7-c8 see Eq. (4)
10 Venulesn pipe 20736 P10 P1 c8-c9 0
11 Cortical radial vein pipe 864 P10 P1 c9-c16 0
12 Afferent arterioleln pipe 10368 P12 P1 c3-c10 0
13 Glomerular capillaryln pipe 4302720 P13 Pc24 c10-c11 3/28
14 Efferent arterioleln pipe 10368 P14 P1 c11-c12 0
15 Descending vas rectum pipe 207360 P15 P2 c12-c13 0
16 Medullary capillary pipe 10368000 P16 P2 c13-c14 see Eq. (5)
17 Ascending vas rectum pipe 414720 P17 P2 c14-c15 0
18 Venulesn pipe 10368 P18 P1 c15-c16 0
19 Arcuate vein pipe 24 P19

P1+P2

2 c16-c17 0
20 Medullary vein pipe 8 P20 P2 c17-c18 0
21 Glomerulussn sphere 20736 Pc19 P1 c19 -
22 Proximal tubulesn pipe 20736 P22 P1 c19-c20 2/3
23 Descending limbsn pipe 20736 P23 P2 c20-c21 3/10
24 Medullary ascending limbsn pipe 20736 P24 P2 c21-c22 0
25 Cortical ascending limbsn pipe 20736 Pc24 P1 c22-c23 0
26 Distal tubulesn pipe 20736 P26 P1 c23-c29 13/84
27 Glomerulusln sphere 10368 P24 P1 c24 -
28 Proximal tubuleln pipe 10368 P28 P1 c24-c25 2/3
29 Descending limbln pipe 10368 P29 P2 c25-c26 5/12
30 Medullary ascending limbln pipe 10368 P30 P2 c26-c27 0
31 Cortical ascending limbln pipe 10368 P31 P1 c27-c28 0
32 Distal tubuleln pipe 10368 P32 P1 c28-c29 0
33 Cortical collecting duct pipe 144 P33 P1 c29-c30 13/84
34 Medullary collecting duct pipe 144 P34 P2 c30-c31 12/13
35 Papillary collecting duct pipe 8 P35 P2 c31-c32 0

Table 1: Summary of the compartments contained in the kidney model. Superscripts sn and ln
denote short and long nephrons, respectively. Number refers to the total number of compartments
contained in the full model.
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i Li µi P ref
i ∆P ref

i Rref
i V ref

i σ̃i ci P ref
ci

µm mmHg mmHg µm µm3 mmHg
1 - - 6 - - 7.62×1010 - c1 100
2 - - 6 - - 4.92×1010 - c2 97.51
3 7×103 µL 98.75 -92.75 270 1.60×109 σ̃G4 c3 95.02
4 2×103 µL 96.26 -90.26 150 1.41×108 σ̃G4 c4 93.97
5 3×103 µL 94.50 -88.50 75 5.30×107 σ̃G4 c5 51.17
6 300 µA 72.57 -66.57 10 9.42×104 - c6 48.08
7 80 µC 49.62 -37.27 4.2 4.43×103 σ̃G5 c7 14.38
8 310 µE 31.23 25.23 11 1.17×105 σ̃G5 c8 8.92
9 40 µC 11.65 -5.65 4.2 2.21×103 σ̃G5 c9 5.44

10 50 µL 7.17 -1.18 12 2.26×104 σ̃G5 c10 50.52
11 3×103 µL 5.40 0.60 150 2.12×108 σ̃G5 c11 47.51
12 260 µA 72.77 -66.77 10 8.16×104 - c12 12.94
13 100 µC 49.02 -35.35 4.2 5.54×103 σ̃G5 c13 9.88
14 265 µE 30.22 -24.22 11 1.00×105 σ̃G5 c14 9.12
15 210 µE 11.41 -5.41 9 5.34×104 σ̃G5 c15 7.78
16 60 µC 9.50 -3.50 4.2 3.32×103 σ̃G5 c16 5.37
17 210 µA 8.45 -2.45 9 5.34×104 σ̃G5 c17 4.41
18 30 µA 6.58 -0.58 12 1.35×104 σ̃G5 c18 4
19 2×103 µL 4.89 1.11 190 2.26×108 σ̃G5 c19 12.36
20 7×103 µL 4.20 1.79 425 3.97×109 σ̃G5 c20 11.73
21 - - 12.36 -6.36 80 2.14×106 σ̃G2 c21 11.30
22 14×103 µN 12.04 -6.04 15 9.89×106 σ̃G3 c22 10.93
23 2×103 µN 11.51 -5.51 8.5 4.53×105 σ̃G3 c23 10.79
24 2×103 µN 11.12 5.11 8.5 4.53×105 σ̃G3 c24 13.66
25 3×103 µN 10.86 -4.86 12 1.35×106 σ̃G3 c25 12.90
26 5×103 µN 10.73 -4.73 13.5 2.86×106 σ̃G3 c26 11.76
27 - - 13.66 -7.66 100 4.18×106 σ̃G2 c27 10.84
28 14×103 µN 13.28 -7.28 55 9.89×106 σ̃G3 c28 10.79
29 5×103 µN 12.33 -6.33 8.5 1.13×106 σ̃G3 c29 10.66
30 5×103 µN 11.30 -5.30 8.5 1.13×106 σ̃G3 c30 6.64
31 1×103 µN 10.82 -4.82 12 4.52×105 σ̃G3 c31 2.00
32 5×103 µN 10.73 -4.73 13.5 2.86×106 σ̃G3 c32 2
33 1.5×103 µN 8.65 -2.65 16 1.20×106 σ̃G3

34 4.5×103 µN 4.32 1.68 16 3.61×106 σ̃G3

35 2.5×103 µN 2.00 4.00 2.3 4.15×1010 σ̃G1

Table 2: Parameter and reference values for the model compartments (indexed by i) and nodes
(index by ci). Viscosity values: µL = 6.4× 10−7 min·mmHg, µA = 2× 10−6 min·mmHg, µE = 2.5×
10−6 min·mmHg, µC = 4.9×10−6 min·mmHg, and µN = 5.4×10−8 min·mmHg. Flexibility values:
σ̃G1 = 0.002 mmHg−1, σ̃G2 = 0.005 mmHg−1, σ̃G3 = 0.045 mmHg−1, σ̃G4 = 0.004 mmHg−1,
σ̃G5 = 0.065 mmHg−1.
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