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Efficient Dynamic Parallel MRI Reconstruction
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Abstract—The low-rank plus sparse (L+S) decomposition
model enables the reconstruction of undersampled dynamic par-
allel magnetic resonance imaging data. Solving for the low rank
and the sparse components involves nonsmooth composite convex
optimization, and algorithms for this problem can be categorized
into proximal gradient methods and variable splitting methods.
This paper investigates new efficient algorithms for both schemes.
While current proximal gradient techniques for the L+S model in-
volve the classical iterative soft thresholding algorithm (ISTA), this
paper considers two accelerated alternatives, one based on the fast
iterative shrinkage-thresholding algorithm (FISTA) and the other
with the recent proximal optimized gradient method (POGM). In
the augmented Lagrangian (AL) framework, we propose an effi-
cient variable splitting scheme based on the form of the data acqui-
sition operator, leading to simpler computation than the conjugate
gradient approach required by existing AL methods. Numerical
results suggest faster convergence of the efficient implementations
for both frameworks, with POGM providing the fastest conver-
gence overall and the practical benefit of being free of algorithm
tuning parameters.

Index Terms—Parallel magnetic resonance imaging (MRI), dy-
namic MRI, low-rank, sparsity, accelerated algorithms, proximal
gradient method (PGM), augmented lagrangian (AL), variable
splitting.

I. INTRODUCTION

THE application of compressed sensing (CS) to Magnetic
Resonance Imaging (MRI) has been extensively explored

to accelerate the data acquisition process [1], [2]. In particu-
lar, since dynamic MRI data is inherently under-sampled, it
is useful to use a CS-MRI model for image reconstruction.
CS has also been combined with parallel MRI techniques such
as SENSitivity Encoding (SENSE) [3], aiming to collect more
data with multiple receiver coils, thereby possibly improving the
spatio-temporal resolution trade-off of the reconstructed images.
This combination is especially useful in dynamic MRI, where
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reconstruction of high spatial and temporal resolution is
desired [4]. Compared with models that use coil-by-coil
auto-calibration, [5], [6], the SENSE framework uses explicit
knowledge of the sensitivity of the receiver coils.

In addition to image sparsity based on CS, the low-rank mod-
els of the space-time matrix have also been explored for dynamic
MRI, based on assumptions of the similarities between tempo-
ral profiles [7]–[10]. In particular, a low-rank plus sparse (L+S)
matrix decomposition assumes incoherence between a low-rank
component L and a sparse component S, with L modeling the
temporally correlated background, and S the dynamic infor-
mation that lies on top of the background. The corresponding
reconstruction problem can be formulated as a convex optimiza-
tion problem, where the nuclear norm and l1 norm are used to
respectively promote low-rankness and sparsity regularization
on L and S. The L+S formulation has various applications, such
as motion estimation in dynamic contrast-enhanced MRI, and
automated background suppression for angiography [8], [9].

One technique for solving such optimization problems in-
volves the class of proximal gradient methods (PGM), whose
iterates are based on the proximal operator [11]–[13]. In partic-
ular, [9] solves the L+S decomposition with the iterative soft
thresholding algorithm (ISTA). Although accelerated variants
of ISTA have been applied to various non-parallel and paral-
lel MRI models with sparsity regularization [14]–[17], to our
knowledge, fast PGM has yet to be explored for the L+S recon-
struction problem.

Variable splitting is another category of optimization schemes
that has been used extensively for various MRI reconstruction
models, with formulation in the augmented Lagrangian (AL)
framework. In single-coil dynamic MRI, variable splitting has
provided efficient alternating update schemes for L+S models
[7], [8]. Using the splitting of variables to decouple a cost func-
tion into simpler sub-problems, one can also apply accelerated
schemes, such as the fast iterative shrinkage-thresholding al-
gorithm (FISTA) [18], to the sub-problems, for more efficient
computation [19], [20]. For the L+S model, [8] proposed a split-
ting scheme for which the AL function leads to sub-problems
with quadratic updates. That approach requires inverting a ma-
trix of the form (E∗E + δI)−1 , where E is a data acquisition
operator, E∗ is its Hermitian adjoint, and δ denotes a penalty pa-
rameter. With non-Cartesian sampling, or with multiple coils in
the case of parallel MRI, a computationally demanding iterative
approach like the conjugate gradient (CG) method is required
for the updates. Efficient formulations of this update have been
investigated, including a singular value decomposition (SVD)
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of E∗E [21], and pre-multiplication of a Fourier operator [10].
However, these implementations are still computationally inten-
sive with multi-coil data.

For under-sampled dynamic parallel MRI, this paper presents
efficient algorithms for the L+S image reconstruction problem.
In particular, in the PGM category, we investigate two acceler-
ated alternatives to ISTA, one based on FISTA, and the other
the recent proximal optimized gradient method (POGM) [22].
For methods involving variable splitting, we adapt a splitting
scheme that uses the matrix structures associated with the under-
sampling pattern, the Fourier encoding and the sensitivity maps,
leading to faster MRI reconstruction [23]–[25]. In this case, we
take advantage of the L+S model structure, leading to efficient
updates with only two AL variables. This paper is an extension
of our previous conference work [26] that briefly investigated
the two accelerated algorithms in the PGM category. Compared
with this earlier work, here we discuss the algorithms in more
detail, investigate another accelerated algorithm in the variable
splitting scheme, and include an extension to non-Cartesian MRI
in the Supplement.

The rest of this paper is organized as follows. Section II
formulates the corresponding convex optimization problem, and
reviews some related methods for solving it. Section III presents
the efficient implementations for the two classes of algorithms.
Section IV reports experimental results, followed by discussion
and conclusion in Sections V and VI respectively.

II. PROBLEM AND RELATED METHODS

In the L+S framework for dynamic MRI, the goal is to esti-
mate an unknown image, modeled as a superposition of a low-
rank component L and a sparse component S. In parallel MRI,
we are provided with under-sampled k-space data d ∈ CNs Nc ,
where Ns is the total number of samples received from each
receiver coil (across all frames), and Nc is the number of coils.
Nx and Ny denote the image dimensions of each image frame,
and Nt is the number of time frames. The L+S formulation [9]
uses the following regularized convex optimization scheme:

argmin
L,S

1
2
‖E(L + S)− d‖22 + λL‖L‖∗ + λS‖TS‖1 , (1)

where L, S ∈ CNx Ny ×Nt are the desired dynamic image
components, E : CNx Ny ×Nt → CNs Nc is the data acquisition
operator that considers the coil sensitivities and the
Fourier transform with under-sampling, and T : CNx Ny ×Nt →
CNx Ny Nt a known sparsifying transform operator based on a
priori assumptions of the domain of image sparsity. This pa-
per considers the (unitary) temporal Fourier transform operator,
with TS = (T ⊗ INx Ny

)vec(S), where T is the Nt ×Nt uni-
tary temporal discrete Fourier transform matrix. This sparsify-
ing transform has been extensively used to promote sparsity in
dynamic MRI reconstruction [4]–[9]. Our accelerated methods
adapt readily to other unitary operators and to 3D dynamic MRI
problems. Here the data consistency is captured by the vector l2-
norm term, the low-rankness of L by the matrix nuclear norm,
and the sparsity of the transformed S by the vector l1 norm.

The contributions between these three terms are balanced by
the regularization parameters λL and λS .

Methods for solving the optimization problem (1) fall into
two classes: those based on the proximal gradient methods,
and those using AL with variable splitting. Below, we review
these two methods and existing implementations for the L+S
reconstruction model.

A. Conventional Proximal Gradient Scheme

To implement the classical PGM on the L+S optimization
problem, we combine the two unknowns by forming a sin-
gle “stacked” variable X = [ L

S ]. With this change, (1) can be
equivalently expressed as

min
X

g(X ) + h1(X ) + h2(X ), where

g(X ) =
1
2
‖[E E]X − d‖22 ,

h1(X ) = λL‖[I 0]X‖∗, and h2(X ) = λS‖[0 T]X‖1 .
(2)

Here I and 0 denote respectively the identity and the zero ma-
trices, of size NxNy ×NxNy . To verify the convergence as-
sumptions of PGM, we note that g(X ) is a smooth, convex, and
continuously differentiable function, whose gradient is Lips-
chitz continuous with constant l(∇g); h1(X ), h2(X ) are contin-
uous, convex and non-smooth functions. For arbitrary variables
Y,Z , the kth iterate of the PGM is then given by the proximal
operator:

Yk = proxh

(Yk−1 − t∇g(Yk−1)
)
, where

proxh(Z) = argmin
Y

h(Y) +
1
2
‖Y − Z‖22 .

Here t is a chosen step size, whose dependence on the Lipschitz
constant l(∇g) guarantees convergence of the algorithm.

The proximal maps for the nuclear norm in h1 and the vec-
tor l1 norm in h2 have closed-form expressions. In particular,
proxh2

is given by the soft thresholding operator

Λλ(Y) = sign(Y)� (|Y| − λ)+ ,

where � denotes element-wise multiplication. proxh1
is the

singular value thresholding operator

SVTλ(Y) = UΛλ(Σ)V ∗,

where UΣV ∗ is a singular value decomposition of Y . Since h1
and h2 are functions of L and S respectively, the k-th iterate
can be written separately for Lk and Sk :

Lk = SVTλL

(
Lk−1 − td(Xk−1)

)
, and

Sk = T∗
(
ΛλS

[
T

(
Sk−1 − td(Xk−1)

)])
, where

d(X ) = [I 0]∇g(X ) = E∗([E E]X − d) = [0 I]∇g(X ).

Here T∗ denotes the adjoint operator of T, defined by the corre-
sponding inverse Fourier transform. The expression of Sk uses
the fact that T represents the unitary temporal Fourier transform,
and that the l2 norm is unitary invariant.



LIN AND FESSLER: EFFICIENT DYNAMIC PARALLEL MRI RECONSTRUCTION FOR THE LOW-RANK PLUS SPARSE MODEL 19

Since the gradient d(Xk−1) is the same in both expressions of
Lk and Sk , only one gradient evaluation is necessary in each iter-
ation. The methods in [9] use this fact, exploiting computational
efficiency by jointly estimating L and S. However, Section III
shows that fast PGM provides much further acceleration.

B. Conventional Variable Splitting Scheme

It has been empirically observed that in some problem set-
tings, AL-based methods can achieve higher accuracy than PGM
in fewer iterations [27]. This has motivated another technique
of solving (1), using variable splitting.

A splitting scheme is introduced in [8] to solve the L+S
decomposition problem. In particular, (1) is re-formulated with
two constraints:

argmin
L,S

min
U,W

1
2
‖E(L + S)− d‖22 + λL‖U‖∗ + λS‖W‖1 (1)

subject to

{
U = L

W = TS.
(3)

With this formulation, the associated modified AL function is

1
2
‖E(L + S)− d‖22 + λL‖U‖∗ + λS‖W‖1

+
δ1

2
‖L− U + V1‖22 +

δ2

2
‖TS −W + V2‖22 ,

where V1 , V2 are Lagrange multiplier arrays, and δ1 , δ2 are two
corresponding AL penalty parameters that affect the conver-
gence rate, but not the final estimates.

This problem can be solved by iterative updates of the four
unknowns, followed by updates of the Lagrange multipliers.
In particular, each update of L and S is quadratic, requiring
computation of (E∗E + δiI)−1 for i = 1, 2. With single-coil
Cartesian data, as considered in [8], E∗E is circulant and one
can use FFT operations for efficient computation. However, in
parallel MRI, the operator E contains additional information of
coil sensitivities, so E∗E is not circulant, and the updates of the
quadratic terms would require an iterative method like the CG
approach.

Based on this observation, Section III presents a new AL
algorithm that simplifies the computation by considering a more
efficient variable splitting scheme for the L+S model.

III. ACCELERATED ALGORITHMS

This section presents three efficient algorithms for the min-
imization problem (1). Two of them are in the class of PGM,
with additional momentum terms in the updates that help achieve
faster convergence rates. The third is an AL method that uses a
different variable splitting scheme than (3), exploiting the struc-
ture of the data acquisition operator E, improving computation
efficiency for parallel MRI.

A. Proximal Gradient Scheme

The ISTA update for L and S, as given in [9], is based on
classical PGM, for which the sequence of function values con-
verges to the optimal function value at a rate of O(1/k) [18].
We assume from now on that the operator E is normalized such

Algorithm 1: Proximal Gradient L+S.
Inputs:
d: under-sampled k-t data
E: data acquisition operator
T: temporal Fourier transform
λL : singular value threshold
λS : sparsity threshold

Initialization:
M0 = L0 = E∗d, S0 = 0
additional initialization (I) for FISTA or POGM

for k = 1, 2, . . . , N do
update Xk by FISTA or POGM scheme (Xk )
update Mk by FISTA or POGM scheme (Mk )

end for
output: XN

that the spectral norm ‖E‖2 = 1 for fully sampled data. Then
the Lipschitz constant of g(·) in (2) satisfies

l(∇g) = ‖[E E]‖22 = 2‖E‖22 ≤ 2, (4)

so ISTA converges for any step size t with 0 < t < 2
2‖E‖22 = 1.

We now introduce two accelerated methods for (1) that have
O(1/k2) convergence rates; their convergence analyses build
on the work of Nesterov’s fast gradient methods [28]. We use
the same algorithm framework for these two accelerated L+S
variants of ISTA, formulated as Algorithm 1. Computing the
gradient is the most expensive step in each iteration; because
both the L and S updates involve the same gradient expression,
we jointly update them by first computing

Xk =

[
Lk

Sk

]

,

then evaluating the gradient in a data consistency term, denoted
as Mk below.

1) FISTA Update: Built upon the convergence analysis in
[28], FISTA achieves the same rate of convergence of O(1/k2)
[18]. In addition to the unknownXk in each iteration, the FISTA

update involves a secondary sequence X̃k = [ L̃k

S̃k
] computed by

adding a “momentum” term to the original sequence. This addi-
tion preserves the computational simplicity of ISTA, as the main
computational effort of gradient evaluation remains unchanged
from ISTA. Given the L+S framework of Algorithm 1, the
additional FISTA initialization and updates are:

(I) X̃0 = X0 , θ0 = 1

(Xk ) Lk = SVTλL
(Mk−1 − S̃k−1)

Sk = T∗
(
ΛλS

[
T

(
Mk−1 − L̃k−1)

])

θk =
1 +

√
1 + 4θ2

k−1

2

X̃k = Xk +
θk−1 − 1

θk
(Xk −Xk−1)

(Mk ) Mk = L̃k + S̃k − tE∗
(
E(L̃k + S̃k )− d

)
.



20 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 5, NO. 1, MARCH 2019

Based on the Lipschitz constant in (4), convergence for FISTA
is guaranteed when the step size satisfies 0 < t ≤ 1

2‖E‖22 = 0.5.
2) POGM Update: In the smooth unconstrained setting, the

recent optimized gradient method (OGM) achieves a worst-case
convergence bound twice as small as that of Nesterov’s fast gra-
dient methods (FGM) [29], [30] by optimizing the choice of
the coefficients that determine the step size in a first-order algo-
rithm by minimizing a relaxed worst-case performance bound
of f(XN )− f(X∗), the cost function discrepancy at the N th
iteration. This optimization problem is solved by semi-definite
programming (SDP) in [31], and an analytical expression of the
optimized step size is derived in [29], confirming the numer-
ical observation that the worst-case performance is two times
better than FGM’s bound. OGM was shown to have optimal
complexity for large-scale smooth problems in [31].

POGM extends OGM to the proximal case for nonsmooth
composite problems. The numerical worst-case performance
bound of POGM is twice better than that of FISTA [22]. In
the L+S model, compared with the FISTA iterate, POGM

introduces an additional sequence X k = [ Lk

S k
], whose update

involves three momentum terms. The POGM formulation is
guaranteed to converge when using the same step size as in
FISTA, and it again achieves the same computational simplicity
as ISTA. The initialization and updates with POGM for the L+S
framework are:

(I) X̃0 = X 0 = X0 , θ0 = ζ0 = 1

(Xk ) L̃k = Mk−1 − Sk−1

S̃k = Mk−1 − Lk−1

θk =

{ 1+
√

1+4θ2
k −1

2 , k < N

1+
√

1+8θ2
k −1

2 , k = N

X k = X̃k +
θk−1 − 1

θk
(X̃k − X̃k−1)

+
θk−1

θk
(X̃k −Xk−1) +

θk−1 − 1
ζk−1θk

t(X k−1 −Xk−1)

ζk = t

(
1 +

θk−1 − 1
θk

+
θk−1

θk

)

Lk = SVTλL
(Lk )

Sk = T∗
(
ΛλS

[
T

(
Sk )

])

(Mk ) Mk = Lk + Sk − tE∗
(
E(Lk + Sk )− d

)
.

The empirical results in Section IV show that POGM con-
verges faster than ISTA and FISTA, yet requires essentially the
same computation time per iteration (dominated by the Mk up-
date needed in all methods).

B. Variable Splitting Scheme

We now consider variable splitting methods for the L+S re-
construction problem for parallel MRI. In this setting, the data
acquisition operator is E = ΩQC, where Ω : CNx Ny Nt Nc →

CNs Nc contains the under-sampling patterns for all frames,
Q ∈ CNx Ny Nt Nc×Nx Ny Nt Nc represents a Fourier encoding ma-
trix, andC : CNx Ny ×Nt → CNx Ny Nt Nc captures the sensitivity
maps of the receiver coils [23]–[25]. While direct extension of
the splitting scheme in [23] to the L+S model leads to at least
four more variables in the AL function, here we make use of the
L and S formulations, and introduce only two AL variables to
capture the constrained cost function. For simpler formulation
of the algorithm, we assume from now on that C is normalized
such that C∗C = I (identity). This normalization is valid since
our model considers sparsity with temporal Fourier transform
T, and the spatial scaling does not affect the rank of the low-
rank component. After reconstruction, one can undo the image
scaling if needed.

With this expression, we represent the following novel refor-
mulation of (1) in the constrained form

argmin
L,S

min
Z,X

1
2
‖ΩZ − d‖22 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = QCX

X = L + S.
(5)

Compared with (3), this splitting scheme also involves four
variable updates, but leads to simpler updates, as shown next.

The modified AL function corresponding to (5) is

1
2
‖ΩZ − d‖22 + λL‖L‖∗ + λS‖TS‖1

+
δ1

2
‖Z −QCX + V1‖22 +

δ2

2
‖X − (L + S) + V2‖22 .

The L update involves the nuclear norm, and its proximal
map is given by singular value thresholding:

argmin
L

λL‖L‖∗ +
δ2

2
‖X − (L + S) + V2‖22

= SVTλL /δ2 (X − S + V2). (6)

The S update contains a vector l1-norm term, whose proximal
operator is soft thresholding, where we use the fact that T is a
unitary operator, with the change of variables S̃ = TS:

argmin
S

λS‖TS‖1 +
δ2

2
‖X − (L + S) + V2‖22

= T∗
(

argmin
S̃

λS‖S̃‖1 +
δ2

2
‖T(X − L + V2)− S̃‖22

)

= T∗ΛλS /δ2

(
T(X − L + V2)

)
. (7)

The updates for Z and X involve quadratic terms:

argmin
Z

1
2
‖ΩZ − d‖22 +

δ1

2
‖Z −QCX + V1‖22

= (Ω∗Ω + δ1I)−1(Ω∗d + δ1(QCX − V1)
)
, (8)
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Algorithm 2: Variable Splitting L+S.
Inputs:
d: under-sampled multi-coil k-t data
Ω: under-sampling mask
Q: Fourier encoding operator
C: coil sensitivity maps
T: temporal Fourier tranform
λL : singular value threshold
λS : sparsity threshold
δ1 , δ2 : AL penalty parameters

Initialization: X0 = L0 = C∗Q∗Ω∗d,
S0 = V1,0 = V2,0 = 0

for k = 1, 2, . . . , N do
compute Zk by efficient inverse (8)
compute Xk by efficient inverse (9)
compute Lk by singular value thresholding (6)
compute Sk by soft thresholding (7)
V1,k ← V1,k−1 + (Zk −QCXk )
V2,k ← V2,k−1 +

(
Xk − (Lk + Sk )

)

end for
output: LN , SN

argmin
X

δ1

2
‖Z −QCX + V1‖22 +

δ2

2
‖X − (L + S) + V2‖22

=
(
C∗C +

δ2

δ1
I
)−1 (

C∗Q∗(Z + V1) +
δ2

δ1
(L + S − V2)

)

=
δ1

δ1 + δ2

(
C∗Q∗(Z + V1) +

δ2

δ1
(L + S − V2)

)
, (9)

where we use the fact that Q is the unitary Fourier encoding
matrix, and that C∗C = I by assumption.

Compared with the splitting scheme in (3), which involves the
inverse (E∗E + δiI)−1 , our proposed variable splitting scheme
in (5) only involves computing (Ω∗Ω + δ1I)−1 . Represent-
ing the under-sampling mask matrix as a Kronecker product
Ω = INc

⊗ Ω̃, we note that Ω̃∗Ω̃ is diagonal, hence the inverse
(Ω∗Ω + δ1I)−1 is easy to compute.

Algorithm 2 summarizes the implementation of these up-
dates, as well as updates for the updates of the Lagrange
multipliers.

IV. RESULTS

To compare the algorithms, we first performed experiments
on two dynamic MRI datasets examined in [9]. Each dataset
includes Cartesian under-sampled multi-coil data d, the k-space
under-sampling mask Ω, and coil sensitivity maps C. We com-
pared the results of the three accelerated algorithms with ISTA
[9] and the AL-based method that requires CG for parallel MRI
[8]. We then tested our methods on the physiologically improved
nonuniform cardiac torso (PINCAT) numerical phantom used in
[7]. In this case, the data is under-sampled with a pseudo-radial
scheme, as in the original implementation [32]. To compare
algorithms in the parallel MRI setting, we included simulated
coil sensitivity maps based on [33], using the Michigan Im-
age Reconstruction Toolbox (MIRT) [34]. In the Supplement,

we also explore a non-Cartesian MRI dataset from [9], where
we compare methods in the PGM scheme. All our experiments
used MATLAB R2018a, with a 2.7-GHz dual-core Intel Core
i5. The MATLAB code that reproduces the experiments with
our efficient algorithms will be available as part of the MIRT.

For each of the three datasets, we kept the regularization pa-
rameters λL , λS consistent for all algorithms. For the in vivo
data, we set them to align as closely as possible with those in
the original code provided by [9]; Section V discusses further
details of this procedure. Similarly, we set a stopping criterion
for our ISTA implementation that provides analogous results
to the reconstructed images in [9]. To ensure fast convergence,
we used a step size t of 0.99 for ISTA, and 0.5 for FISTA and
POGM, as provided by the convergence theory of those meth-
ods. In addition, FISTA and POGM used an adaptive restart
scheme [35]; we explored both the function and the gradient
restart schemes, and report the results with the function scheme
due to its slightly faster convergence with both datasets. We
tuned the penalty parameters δ1 , δ2 for the AL-based meth-
ods by sweeping across a range of values and choosing the
ones that achieve the fastest convergence among them. For both
datasets, we applied 3 inner CG iterations for each outer iter-
ation of the AL scheme (3), with warm-starting; i.e., each CG
call starts with the estimate from the previous AL iteration. No
such inner iterations are needed for the proposed AL approach
(5). We examine convergence rate by computing the normal-
ized root-mean-squared difference (NRMSD) of each iterate to
a converged image, defined by ‖Xk −X∞‖2/‖X∞‖2 , where
Xk = Lk + Sk , and ‖ · ‖2 denotes the vector l2 norm. We ob-
tained X∞ = L∞ + S∞ as a reference by averaging XAL-2

∞ and
XPOGM
∞ , as discussed below for each dataset, then computed the

distance to the minimizer.

A. Cardiac Perfusion Dataset

Images for this dataset have size Nx ×Ny = 128× 128, with
Nt = 40 temporal profiles and Nc = 12 coils. Data were retro-
spectively under-sampled by a factor of 10, using the sampling
pattern from [9], with fully sampled low spatial frequencies and
low-density-sampled outer k-space. We used λL = λS = 0.01
as in [9], with scalings to match the original implementation, as
discussed below in Section V. For the variable splitting frame-
work, the penalty parameters were empirically tuned to achieve
fast convergence, with δ1 = δ2 = 1/5 for AL with CG, and
δ1 = 1/5, δ2 = 1/50 for the efficient AL method. We ran the
efficient AL and the POGM implementations for 24,000 sec-
onds to obtain XAL-2

∞ and XPOGM
∞ . In this case, the cost function

values fAL-2
∞ and fPOGM

∞ are within 10−16 relative difference
from each other, and we averaged the results to obtain X∞ and
f∞. In this case, the NRMSD between XAL-2

∞ and XPOGM
∞ is

approximately 8.9× 10−13%. As shown in Fig. 1, POGM con-
verges the fastest overall. ISTA converges faster than the other
three methods at the beginning, a phenomenon that could be
due to the chosen step size. FISTA converges faster than the
AL-based methods in this case, with the CG implementation
being the slowest of all. The supplement contains additional
figures showing the long-run behavior of the algorithms.
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Fig. 1. Convergence of the five algorithms for the two datasets, in terms of NRMSD to the minimizer (top row), as well as the cost function values (bottom row).
AL-CG and AL-2 refer respectively to the AL methods with CG (3) and with Algorithm 2 implementations. Every 100th iteration is marked by a dot, indicating
their relative speeds. The blue square markers show when ISTA reaches the approximate stopping criteria corresponding to the implementation in [9].

For this dataset, ISTA reached its stopping criterion from [9]
at k = 53 iterations, after 30 seconds of elapsed compute time.
Fig. 2 shows the magnitude of the reconstructed X∞, as well as
images of all 5 algorithms at 30 seconds time elapsed.

To help visualize the reconstructed image in the spatial-
temporal domain, the Supplement includes y-t images for a
selected y-slice in the center, with comparison to the fully
sampled case. The AL-2 and the POGM updates provide sig-
nificantly faster convergence than the other methods in their
corresponding algorithmic schemes.

B. Cardiac Cine Dataset

This dataset corresponds to images of size 256× 256, with
24 temporal frames and 12 coils, and a retrospective under-
sampling factor of 8. As in the cadiac perfusion case, we used
λL = 0.01, λS = 0.0025 with additional scalings. For the AL-
based methods, we used δ1 = 1/10, δ2 = 1/20 for AL-CG, and
δ1 = 1/10, δ2 = 1/100 for AL-2. To obtain X∞ and f∞, we ran
the efficient AL and the POGM implementations for 30,000

seconds and averaged the results. The cost function values
are within 10−16 relative difference from each other, and the
NRMSD between XAL-2

∞ and XPOGM
∞ is 1.4× 10−7%. Fig. 1

illustrates that AL-2 achieving faster convergence than the
FISTA update, but slower than POGM. Fig. 3 shows results with
the same run time cut-off of 48 seconds, with ISTA taking k =
30 iterations to reach the stopping criterion. We again observed
superior rates of convergence of the efficient implementations,
in both the proximal gradient and the variable splitting schemes.

C. PINCAT Phantom Dataset

The ground truth phantom data provided by [7] has spatial
dimension 128× 128 with 50 temporal frames. To compare
the algorithms in the multi-coil setting, we added simulated
coil sensitivity maps of 32 coils (4 rings of 8 coils), with coil
compression to reduce to Nc = 8 coils. Following the setup in
[7], we applied a pseudo-radial under-sampling mask Ω, i.e.,
a Cartesian trajectory that closely approximates a radial trajec-
tory, with 24 spokes per frame, corresponding to a acceleration
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Fig. 2. First row: X∞, taken as the average of XAL-2∞ and XPOGM∞ , and Xfull,
reconstructed using fully sampled data without regularization. Left column:
reconstructed images on a scale of [0, 1], of one temporal frame of the Cardiac
Perfusion Dataset, after the closest run time less than when ISTA reaches its
stopping criterion (30 seconds). Right column: the residual images are plotted
on a scale of [0, 0.2], with their corresponding NRMSD shown on the left of
each row.

Fig. 3. First row: X∞, taken as the average of XAL-2∞ and XPOGM∞ . Left
column: reconstructed images on a scale of [0, 1], on one temporal frame for the
Cardiac Cine Dataset, after the closest run time less than when ISTA reaches its
stopping criterion (48 seconds). Right column: the residual images are plotted
on a scale of [0, 0.2], with their corresponding NRMSD shown on the left of
each row.
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Fig. 4. From left to right: Xtrue of one temporal frame from the ground truth PINCAT phantom data, and its corresponding reconstruction X∞ as the average of
XAL-2∞ and XPOGM∞ , all on a scale of [0, 1]. The residual image |Xtrue −X∞| is on a scale of [0, 0.1].

Fig. 5. Convergence of the five algorithms for the PINCAT phantom dataset, in terms of NRMSD and cost to the minimizer. Every 100th iteration of each
algorithm is marked by a dot, indicating their relative speeds.

factor of 128/24 ≈ 5.3. We added zero mean Gaussian noise
such that the signal to noise ratio is 46 dB. We tuned the regular-
ization parameters λL to 0.0025 multiplied by the top singular
value of L0 , and λS to 0.05, each divided by a constant that
captures the square root of the sum of squares of the coil sen-
sitivitiy maps before the normalization C∗C = I. The penalty
parameters in the AL-based methods were empirically tuned
to achieve fast convergence, with δ1 = δ2 = 1/3 for AL-CG,
and δ1 = 1/5, δ2 = 1/20 for AL-2. We ran AL-2 and POGM
for 30,000 seconds, and averaged the results to obtain X∞ and
f∞. The NRMSD between XAL-2

∞ and XPOGM
∞ is approximately

4.4× 10−4%, and the cost function values fAL-2
∞ and fPOGM

∞ are
within 10−12 relative difference from each other. The conver-
gence behavior is similar to the in vivo case; Fig. 5 demonstrates
again the superior convergence speed of AL-2 and POGM in the
two schemes. For unknown reasons, AL-2 reaches a final cost
that is about 10−10 higher than the proximal algorithms. This
behavior is unimportant practically but still somewhat curious;
it is unique to the PINCAT data. To visualize the results, Fig. 4
shows images of the ground truth Xtrue and the under-sampled

reconstruction X∞ = L∞ + S∞. See the Supplement for y-t
images compared to the ground truth.

V. DISCUSSION

A. Alternative Variable Splittings

With under-sampled multi-coil data, we have expressed the
data acquisition operator as E = ΩQC, and our proposed AL
approach (5) splits the sampling mask Ω from the Fourier encod-
ing together with the coil sensitivity maps QC. An alternative
is to split the Fourier encoding operator with under-sampling,
ΩQ, from the coil sensitivities C, as proposed in [23]. Com-
pared with (5), this splitting introduces a slight variation:

min
Z,X,L,S

1
2
‖ΩQZ − d‖22 + λL‖L‖∗ + λS‖TS‖1

subject to

{
Z = CX,

X = L + S.
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In this case, the update for Z involves the inverse of
Q∗Ω∗ΩQ + δ1I , which is block circulant and can be diago-
nalized by pre- and post-multiplication by FFT operators [25].
Hence with this splitting, efficient implementation of the in-
verse is again possible. We chose to implement the splitting (5)
because of the simpler expressions (8), (9) for the Z and X
updates, with diagonal matrix inverses due to the unitary prop-
erty of Q. This leads to simpler updates with only inversion of
diagonal matrices.

Although the proposed AL scheme shows empirical con-
vergence, it does not have analytical convergence guarantee
as in generalized Alternating Direction Method of Multipliers
(ADMM). To compare the variable splitting (5) to the ADMM
scheme, we note that it is equivalent to a formulation in the
monotropic programming framework [36]:

min
U

f(U)

subject to AU = b,

where U =

⎡

⎢
⎢
⎢
⎣

Z

X

L

S

⎤

⎥
⎥
⎥
⎦

, A =

[
I −QC 0 0
0 I −I −I

]

, and

b = 0. Since the last two columns of A are linearly dependent,
this splitting scheme does not satisfy the sufficient conditions
for the convergence guarantee of ADMM [36]. To satisfy those
conditions, one could introduce an alternative variable splitting
that meets the convergence criteria of ADMM, but at the cost of
more variables, and thus potentially slightly slower convergence
[25]. We did not investigate that approach here since AL-2
empirically converged well, despite not satisfying the sufficient
conditions in [36]. In addition, POGM converged faster, and is
practically preferable because it does not require any AL-type
tuning parameters.

B. ISTA Implementation in Comparison With [9]

Our ISTA implementation is based on the algorithm discussed
mathematically in [9]. However, we did not directly use the
MATLAB code provided for [9] at http://cai2r.net/resources/
software/ls-reconstruction-matlab-code, because that code is
slightly inconsistent with the math in [9].

The first inconsistency is the implementation of the operator
E. The MATLAB code for the Hermitian adjoint E∗ operation
contains an additional division by the sum of squares of the
coil sensitivity maps that causes inconsistency between the for-
ward and the adjoint operations, preventing convergence to the
minimizer of the stated cost function. We modified the code so
that E∗ is the exact adjoint of E, so that all of the algorithms,
including ISTA, can converge to the same cost function. To ob-
tain similar images as those in [9], we pre-process by dividing
the given coil sensitivities C by the square root of its sum of
squares. Since this factor is close to being constant across the
image, we absorb it into the regularization parameters λL and
λS , to ensure a consistent setup with [9].

Another implementation difference involves the singular
value threshold. In the cost function (1), the nuclear norm regu-
larization parameter λL is a fixed constant, but in the provided
code, λL changes across iterations, with a factor that depends
on the leading singular value of L. This “moving target” cost
function would make it impossible to compare the convergence
rates of different algorithms. To ensure fair comparison of all
the algorithms, while maintaining similar overall regularization
as in [9], we fix λL by considering the leading singular value
of L∞, produced by running the original implementation until
convergence.

The provided implementation has stopping criteria based on
the maximum number of iterations and the tolerance of the
change in updates. With the above modifications, we stop our
ISTA implementation when it reaches the same cost function
value as at the stopped points, and compare the NRMSD at
these points with other algorithms, as indicated by the blue
square markers in Fig. 1.

VI. CONCLUSION

This paper presents efficient algorithms for the L+S recon-
struction of dynamic parallel MRI. Within the proximal gradient
category, in place of using ISTA to solve the optimization prob-
lem, we consider updates by FISTA and POGM. Both meth-
ods can be efficiently formulated within the L+S framework,
preserving the computational simplicity of the original ISTA
implementation. Experiments with two cardiac datasets in [9]
and a phantom dataset in [7] verify their accelerated rates of
convergence.

For AL-based approaches, we also proposed an efficient vari-
able splitting scheme that considers the structure of the data
acquisition operator. In particular, we split the variables based
on the under-sampling mask, the Fourier transform operator and
the coil sensitivity maps. While the existing splitting scheme for
the L+S model requires CG approach to solve for the quadratic
updates [8], our proposed formulation leads to a diagonal ma-
trix inverse that can be easily computed. Numerical experiments
again confirms its superior convergence rate, compared with the
existing implementation.

Although there is no strict convexity guarantee for the L+S
optimization problem, our experimental results suggest high
similarities between the reconstructed images by the AL and
the PGM schemes, due to the observed low NRMSD of both
XAL-2
∞ and XPOGM

∞ . In the implementation perspective, how-
ever, AL-based methods in the L+S model requires the tuning
of two additional penalty parameters, whereas POGM has no
extra tuning parameters. This practical benefit, combined with
the empirical faster convergence of POGM seen in the exam-
ples, make POGM our recommended approach for solving L+S
reconstruction problems for dynamic MRI.
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This supplement presents additional figures and experiment
that could not be included in the main body of the manuscript
[1] due to page restrictions.

VIII. y-t IMAGES

To help visualize the reconstruction results for different time
frames, we provide figures of the reconstructed images in the
y-t domain, compared to their reference images, as shown in
Fig. 1 and 2.

Fig. 1. The reconstructed images on a scale of [0,1] from the fully sampled
and under-sampled Perfusion Dataset in the y-t domain, where the central
slice for y is taken. The difference image is plotted on a scale of [0,0.2].

Fig. 2. The ground truth and the reconstructed image on a scale of [0,1] from
the under-sampled PINCAT Dataset in the y-t domain, where the central slice
for y is taken. The difference image is plotted on a scale of [0,0.2].

VII. LONG-RUN BEHAVIORS

Figures 3 and 4 show the results of running many more
iterations of the algorithms investigated to illustrate the long-
run behaviors of the methods, for the Cardiac Perfusion,
Cardiac Cine and the PINCAT phantom datasets.
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Fig. 3. Long-run convergence behaviors of the five algorithms for the three
datasets, in terms of the cost function values. Every 500th iteration is marked
by a dot, indicating their relative speeds.
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Fig. 4. Long-run convergence behaviors of the five algorithms for the three
datasets, in terms of the NRMSD to the minimizer. Every 500th iteration is
marked by a dot, indicating their relative speeds.

IX. NON-CARTESIAN EXPERIMENT

We performed an additional experiment on the Abdominal
dynamic contrast-enhanced (DCE) MRI dataset examined in
[9]. This non-Cartesian dataset uses a golden-angle radial
sampling pattern, and corresponds to images of size 384×384,
with 28 temporal frames and 12 receiver coils, having an
acceleration factor of 12. As in the setup in the MATLAB
code provided by [9], we used λL = 0.025, λS = 2e-5,
with adjusted scaling as described in Section V.B. Here, the
step size for PGM depends on the maximum eigenvalue of
E∗E, and we estimated it using power iteration. Due to the
observed faster convergence of POGM than the AL methods,
and because an additional variable splitting would needed for
an AL approach for the non-Cartesian case, we focused on the
proximal methods for this experiment. To obtain X∞ and f∞,
we ran the POGM implementations for 1e5 seconds. Fig. 5

illustrates that POGM achieves the fastest convergence among
the three methods. Fig. 6 shows reconstructed image results
with the same run time cut-off of 153 seconds, with ISTA
taking k = 9 iterations to reach the stopping criterion.

Fig. 5. Convergence of the three proximal algorithms for the Abdominal
DCE phantom dataset, in terms of NRMSD and cost to the minimizer. Every
500th iteration of each algorithm is marked by a dot, indicating their relative
speeds.
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Fig. 6. First row: XPOGM
∞ . Left column: reconstructed images on a scale

of [0,5e-4], on one temporal frame for the Abdominal DCE Dataset, after
the closest run time less than when ISTA reaches its stopping criterion (153
seconds). Right column: the residual images are plotted on a scale of [0,2e-4],
with their corresponding NRMSD shown on the left of each row.


