Generalizability test of a deep learning-based CT image denoising method [pdf] | ||
R. Zeng, C. Y. Lin, Q. Li, J. Lu, J. A. Fessler, K. J. Myers | ||
Proc. CT Meeting, pp. 224-227, 2020. | ||
A Temporal Model for Task-based Functional MR Images [pdf] | ||
C. Y. Lin, D. C. Noll, J. A. Fessler | ||
Proc. IEEE Intl. Symp. Biomed. Imag., pp. 1035-1038, 2020. | ||
Evaluation of Sparse Sampling Approaches for 3D Functional MRI [pdf] | ||
M. Karker, C. Lin, J. A. Fessler, D. C. Noll | ||
Proc. Intl. Soc. Mag. Res. Med., p. 0370, 2019. | ||
Accelerated Methods for Low-Rank Plus Sparse Image Reconstruction [pdf] | ||
C. Y. Lin, J. A. Fessler | ||
Proc. IEEE Intl. Symp. Biomed. Imag., pp. 48-51, 2018. |
Performance of a Deep Learning-based CT Image Denoising Method: Generalizability over Dose, Reconstruction Kernel, and Slice Thickness [pdf] | |
R. Zeng, C. Y. Lin, Q. Li, L. Jiang, M. Skopec, J. A. Fessler, K. J. Myers | |
Med. Phys., 49(2): 836-853, Dec. 2021. | |
Efficient Regularized Field Map Estimation in 3D MRI [pdf] [code] | |
C. Y. Lin, J. A. Fessler | |
IEEE Trans. Comput. Imag., 6: 1451-1458, Oct. 2020. | |
Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model [pdf] [code] | |
C. Y. Lin, J. A. Fessler | |
IEEE Trans. Comput. Imag., 5(1): 17-26, Mar. 2019. | |
Numerical Methods for Polyline-to-Point-Cloud Registration with Applications to Patient-Specific Stent Reconstruction [pdf] | |
C. Y. Lin, A. Veneziani, L. Ruthotto | |
Int. J. Numer. Method Biomed. Eng., 34(3): e2934, Mar. 2018. | |
Global Sensitivity Analysis in a Mathematical Model of the Renal Interstitium [pdf] | |
M. Bedell, C. Y. Lin, E. Roman-Melendez, I. Sgouralis | |
Involve, a Journal of Mathematics, 10(4): 625-649, Mar. 2017. |